Skip to main content

A Low-Cost Method for Tracking the Induction of Apoptosis Using FRET-Based Activity Sensors in Suspension Cells

  • Protocol
  • First Online:
Apoptosis Methods in Toxicology

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Apoptosis, or programmed cell death, is a tightly regulated cellular event that plays an important role in both normal developmental processes and many pathological states. The induction of apoptosis is tightly regulated through the coordinated action of members of the caspase family of proteases. Here we discuss a relatively inexpensive protocol for monitoring the induction and progression of apoptosis using a genetically encoded fluorescence resonance energy transfer (FRET)-based biosensor of the executioner caspase, caspase-3, in living suspension cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  CAS  PubMed  Google Scholar 

  2. Nagata S (1997) Apoptosis by death factor. Cell 88:355–365

    Article  CAS  PubMed  Google Scholar 

  3. Plati J, Bucur O, Khosravi-Far R (2011) Apoptotic cell signaling in cancer progression and therapy. Integr Biol 3:279–296

    Article  CAS  Google Scholar 

  4. Cotter TG (2009) Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 9:501–507

    Article  CAS  PubMed  Google Scholar 

  5. Shalini S, Dorstyn L, Dawar S, Kumar S (2015) Old, new and emerging functions of caspases. Cell Death Differ 22:526–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mohamad N, Gutierrez A, Nunez M, Cocca C, Martin G, Cricco G, Medina V, Rivera E, Bergoc R (2005) Mitochondrial apoptotic pathways. Biocell 29:149–161

    CAS  PubMed  Google Scholar 

  7. Khosravi-Far R, Esposti MD (2004) Death receptor signals to mitochondria. Cancer Biol Ther 3:1051–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  CAS  PubMed  Google Scholar 

  9. Hail N Jr, Carter BZ, Konopleva M, Andreeff M (2006) Apoptosis effector mechanisms: a requiem performed in different keys. Apoptosis 11:889–904

    Article  PubMed  Google Scholar 

  10. Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15:49–63

    Article  CAS  PubMed  Google Scholar 

  11. Wang ZB, Liu YQ, Cui YF (2005) Pathways to caspase activation. Cell Biol Int 29:489–496

    Article  CAS  PubMed  Google Scholar 

  12. Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4:139–163

    Article  CAS  PubMed  Google Scholar 

  13. Fas SC, Fritzsching B, Suri-Payer E, Krammer PH (2006) Death receptor signaling and its function in the immune system. Curr Dir Autoimmun 9:1–17

    CAS  PubMed  Google Scholar 

  14. Gaur U, Aggarwal BB (2003) Regulation of proliferation, survival and apoptosis by members of the TNF superfamily. Biochem Pharmacol 66:1403–1408

    Article  CAS  PubMed  Google Scholar 

  15. Guicciardi ME, Gores GJ (2009) Life and death by death receptors. FASEB J 23:1625–1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    Article  CAS  PubMed  Google Scholar 

  17. Lovell JF, Billen LP, Bindner S, Shamas-Din A, Fradin C, Leber B, Andrews DW (2008) Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell 135:1074–1084

    Article  CAS  PubMed  Google Scholar 

  18. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490

    Article  CAS  PubMed  Google Scholar 

  19. Wu Y, Xing D, Chen WR (2006) Single cell FRET imaging for determination of pathway of tumor cell apoptosis induced by photofrin-PDT. Cell Cycle 5:729–734

    Article  CAS  PubMed  Google Scholar 

  20. Takemoto K, Nagai T, Miyawaki A, Miura M (2003) Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects. J Cell Biol 160:235–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Newman RH, Fosbrink MD, Zhang J (2011) Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem Rev 111:3614–3666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Newman RH, Zhang J (2014) The design and application of genetically encodable biosensors based on fluorescent proteins. Methods Mol Biol 1071:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mank M, Griesbeck O (2008) Genetically encoded calcium indicators. Chem Rev 108:1550–1564

    Article  CAS  PubMed  Google Scholar 

  24. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  CAS  PubMed  Google Scholar 

  25. Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V, Baker D, Tsien RY (2006) Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol 13:521–530

    Article  CAS  PubMed  Google Scholar 

  26. Truong K, Sawano A, Mizuno H, Hama H, Tong KI, Mal TK, Miyawaki A, Ikura M (2001) FRET-based in vivo Ca2+ imaging by a new calmodulin-GFP fusion molecule. Nat Struct Biol 8:1069–1073

    Article  CAS  PubMed  Google Scholar 

  27. Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295:1711–1715

    Article  CAS  PubMed  Google Scholar 

  28. Ponsioen B, Zhao J, Riedl J, Zwartkruis F, van der Krogt G, Zaccolo M, Moolenaar WH, Bos JL, Jalink K (2004) Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep 5:1176–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nikolaev VO, Bunemann M, Schmitteckert E, Lohse MJ, Engelhardt S (2006) Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptor-mediated signaling. Circ Res 99:1084–1091

    Article  CAS  PubMed  Google Scholar 

  30. Nikolaev VO, Bunemann M, Hein L, Hannawacker A, Lohse MJ (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279:37215–37218

    Article  CAS  PubMed  Google Scholar 

  31. Allen MD, DiPilato LM, Rahdar M, Ren YR, Chong C, Liu JO, Zhang J (2006) Reading dynamic kinase activity in living cells for high-throughput screening. ACS Chem Biol 1:371–376

    Article  CAS  PubMed  Google Scholar 

  32. Zhang J, Allen MD (2007) FRET-based biosensors for protein kinases: illuminating the kinome. Mol Biosyst 3:759–765

    Article  CAS  PubMed  Google Scholar 

  33. Newman RH, Zhang J (2008) Visualization of phosphatase activity in living cells with a FRET-based calcineurin activity sensor. Mol Biosyst 4:496–501

    Article  CAS  PubMed  Google Scholar 

  34. Mehta S, Aye-Han NN, Ganesan A, Oldach L, Gorshkov K, Zhang J (2014) Calmodulin-controlled spatial decoding of oscillatory Ca2+ signals by calcineurin. eLife 3:e03765

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mochizuki N, Yamashita S, Kurokawa K, Ohba Y, Nagai T, Miyawaki A, Matsuda M (2001) Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411:1065–1068

    Article  CAS  PubMed  Google Scholar 

  36. Itoh RE, Kurokawa K, Ohba Y, Yoshizaki H, Mochizuki N, Matsuda M (2002) Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol Cell Biol 22:6582–6591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoshizaki H, Ohba Y, Kurokawa K, Itoh RE, Nakamura T, Mochizuki N, Nagashima K, Matsuda M (2003) Activity of Rho-family GTPases during cell division as visualized with FRET-based probes. J Cell Biol 162:223–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yoshizaki H, Aoki K, Nakamura T, Matsuda M (2006) Regulation of RalA GTPase by phosphatidylinositol 3-kinase as visualized by FRET probes. Biochem Soc Trans 34:851–854

    Article  CAS  PubMed  Google Scholar 

  39. Pertz O, Hodgson L, Klemke RL, Hahn KM (2006) Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440:1069–1072

    Article  CAS  PubMed  Google Scholar 

  40. Lohse MJ, Nikolaev VO, Hein P, Hoffmann C, Vilardaga JP, Bunemann M (2008) Optical techniques to analyze real-time activation and signaling of G-protein-coupled receptors. Trends Pharmacol Sci 29:159–165

    Article  CAS  PubMed  Google Scholar 

  41. Itoh RE, Kurokawa K, Fujioka A, Sharma A, Mayer BJ, Matsuda M (2005) A FRET-based probe for epidermal growth factor receptor bound non-covalently to a pair of synthetic amphipathic helixes. Exp Cell Res 307:142–152

    Article  CAS  PubMed  Google Scholar 

  42. Kurokawa K, Mochizuki N, Ohba Y, Mizuno H, Miyawaki A, Matsuda M (2001) A pair of fluorescent resonance energy transfer-based probes for tyrosine phosphorylation of the CrkII adaptor protein in vivo. J Biol Chem 276:31305–31310

    Article  CAS  PubMed  Google Scholar 

  43. Sato M, Umezawa Y (2004) Imaging protein phosphorylation by fluorescence in single living cells. Methods 32:451–455

    Article  CAS  PubMed  Google Scholar 

  44. Mehta S, Zhang J (2011) Reporting from the field: genetically encoded fluorescent reporters uncover signaling dynamics in living biological systems. Annu Rev Biochem 80:375–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Robinson KH, Yang JR, Zhang J (2014) FRET and BRET-based biosensors in live cell compound screens. Methods Mol Biol 1071:217–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tian H, Ip L, Luo H, Chang DC, Luo KQ (2007) A high throughput drug screen based on fluorescence resonance energy transfer (FRET) for anticancer activity of compounds from herbal medicine. Br J Pharmacol 150:321–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhu X, Fu A, Luo KQ (2012) A high-throughput fluorescence resonance energy transfer (FRET)-based endothelial cell apoptosis assay and its application for screening vascular disrupting agents. Biochem Biophys Res Commun 418:641–646

    Article  CAS  PubMed  Google Scholar 

  48. Koike-Kuroda Y, Kakeyama M, Fujimaki H, Tsukahara S (2010) Use of live imaging analysis for evaluation of cytotoxic chemicals that induce apoptotic cell death. Toxicol In Vitro 24:2012–2020

    Article  CAS  PubMed  Google Scholar 

  49. Yadavilli S, Martinez-Ceballos E, Snowden-Aikens J, Hurst A, Joseph T, Albrecht T, Muganda PM (2007) Diepoxybutane activates the mitochondrial apoptotic pathway and mediates apoptosis in human lymphoblasts through oxidative stress. Toxicol In Vitro 21:1429–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Luo KQ, Yu VC, Pu Y, Chang DC (2001) Application of the fluorescence resonance energy transfer method for studying the dynamics of caspase-3 activation during UV-induced apoptosis in living HeLa cells. Biochem Biophys Res Commun 283:1054–1060

    Article  CAS  PubMed  Google Scholar 

  51. Rehm M, Dussmann H, Janicke RU, Tavare JM, Kogel D, Prehn JH (2002) Single-cell fluorescence resonance energy transfer analysis demonstrates that caspase activation during apoptosis is a rapid process. Role of caspase-3. J Biol Chem 277:24506–24514

    Article  CAS  PubMed  Google Scholar 

  52. Tyas L, Brophy VA, Pope A, Rivett AJ, Tavare JM (2000) Rapid caspase-3 activation during apoptosis revealed using fluorescence-resonance energy transfer. EMBO Rep 1:266–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Newman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ewunkem, A.J., Parson, C.D., Muganda, P.M., Newman, R.H. (2016). A Low-Cost Method for Tracking the Induction of Apoptosis Using FRET-Based Activity Sensors in Suspension Cells. In: Muganda, P. (eds) Apoptosis Methods in Toxicology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3588-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3588-8_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3586-4

  • Online ISBN: 978-1-4939-3588-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics