Skip to main content

Detection of Apoptosis: From Bench Side to Clinical Practice

  • Protocol
  • First Online:
Book cover Apoptosis Methods in Toxicology

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 947 Accesses

Abstract

Apoptosis or programmed cell death is implicated in several pathological conditions, such as cancer and neurodegenerative diseases. An increasing number of therapies are developed by targeting apoptosis signaling components to either induce or inhibit apoptosis in target cells. For these reasons, it is critical to develop appropriate analytical methods for the detection of apoptotic cell death in the context of monitoring relevant disease progression and therapeutic effects of clinical treatments (e.g., chemotherapy in cancer patients). This review provides an overview of the currently used methods for detection of apoptosis and their applications in research and clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson HA, Maylock CA, Williams JA, Paweletz CP, Shu H, Shacter E (2003) Serum-derived protein S binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells. Nat Immunol 4:87–91

    Article  CAS  PubMed  Google Scholar 

  2. Shacter E, Williams JA, Hinson RM, Senturker S, Lee YJ (2000) Oxidative stress interferes with cancer chemotherapy: inhibition of lymphoma cell apoptosis and phagocytosis. Blood 96:307–313

    CAS  PubMed  Google Scholar 

  3. Uehara H, Shacter E (2008) Auto-oxidation and oligomerization of protein S on the apoptotic cell surface is required for Mer tyrosine kinase-mediated phagocytosis of apoptotic cells. J Immunol 180:2522–2530

    Article  CAS  PubMed  Google Scholar 

  4. Fesik SW (2005) Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 5:876–885

    Article  CAS  PubMed  Google Scholar 

  5. Qiao L, Wong BC (2009) Targeting apoptosis as an approach for gastrointestinal cancer therapy. Drug Resist Updat 12:55–64

    Article  CAS  PubMed  Google Scholar 

  6. Wong KK (2009) Recent developments in anti-cancer agents targeting the Ras/Raf/MEK/ERK pathway. Recent Pat Anticancer Drug Discov 4:28–35

    Article  CAS  PubMed  Google Scholar 

  7. Brunelle JK, Zhang B (2010) Apoptosis assays for quantifying the bioactivity of anticancer drug products. Drug Resist Updat 13:172–179

    Article  CAS  PubMed  Google Scholar 

  8. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eum KH, Lee M (2011) Crosstalk between autophagy and apoptosis in the regulation of paclitaxel-induced cell death in v-Ha-ras-transformed fibroblasts. Mol Cell Biochem 348:61–68

    Article  CAS  PubMed  Google Scholar 

  10. Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B et al (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 45:487–498

    Article  CAS  PubMed  Google Scholar 

  11. Ward TH, Cummings J, Dean E, Greystoke A, Hou JM, Backen A et al (2008) Biomarkers of apoptosis. Br J Cancer 99:841–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  CAS  PubMed  Google Scholar 

  13. Bazzoni F, Beutler B (1996) The tumor necrosis factor ligand and receptor families. N Engl J Med 334:1717–1725

    Article  CAS  PubMed  Google Scholar 

  14. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501

    Article  CAS  PubMed  Google Scholar 

  16. Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5:897–907

    Article  CAS  PubMed  Google Scholar 

  17. Bratton DL, Fadok VA, Richter DA, Kailey JM, Guthrie LA, Henson PM (1997) Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J Biol Chem 272:26159–26165

    Article  CAS  PubMed  Google Scholar 

  18. Galluzzi L, Aaronson SA, Abrams J, Alnemri ES, Andrews DW, Baehrecke EH et al (2009) Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ 16:1093–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420

    CAS  PubMed  Google Scholar 

  20. Park J, Park Y, Kim S (2013) Signal amplification via biological self-assembly of surface-engineered quantum dots for multiplexed subattomolar immunoassays and apoptosis imaging. ACS Nano 7:9416–9427

    Article  CAS  PubMed  Google Scholar 

  21. Prinzen L, Miserus RJ, Dirksen A, Hackeng TM, Deckers N, Bitsch NJ et al (2007) Optical and magnetic resonance imaging of cell death and platelet activation using annexin a5-functionalized quantum dots. Nano Lett 7:93–100

    Article  CAS  PubMed  Google Scholar 

  22. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184:39–51

    Article  CAS  PubMed  Google Scholar 

  23. de Graaf AO, van den Heuvel LP, Dijkman HB, de Abreu RA, Birkenkamp KU, de Witte T et al (2004) Bcl-2 prevents loss of mitochondria in CCCP-induced apoptosis. Exp Cell Res 299:533–540

    Article  PubMed  CAS  Google Scholar 

  24. Terauchi S, Yamamoto T, Yamashita K, Kataoka M, Terada H, Shinohara Y (2005) Molecular basis of morphological changes in mitochondrial membrane accompanying induction of permeability transition, as revealed by immuno-electron microscopy. Mitochondrion 5:248–254

    Article  CAS  PubMed  Google Scholar 

  25. Galluzzi L, Zamzami N, de La Motte RT, Lemaire C, Brenner C, Kroemer G (2007) Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis 12:803–813

    Article  CAS  PubMed  Google Scholar 

  26. Loeffler M, Daugas E, Susin SA, Zamzami N, Metivier D, Nieminen AL et al (2001) Dominant cell death induction by extramitochondrially targeted apoptosis-inducing factor. FASEB J 15:758–767

    Article  CAS  PubMed  Google Scholar 

  27. Waterhouse NJ, Trapani JA (2003) A new quantitative assay for cytochrome c release in apoptotic cells. Cell Death Differ 10:853–855

    Article  CAS  PubMed  Google Scholar 

  28. Anantharam V, Kitazawa M, Wagner J, Kaul S, Kanthasamy AG (2002) Caspase-3-dependent proteolytic cleavage of protein kinase Cdelta is essential for oxidative stress-mediated dopaminergic cell death after exposure to methylcyclopentadienyl manganese tricarbonyl. J Neurosci 22:1738–1751

    CAS  PubMed  Google Scholar 

  29. Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR (2000) The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol 2:156–162

    Article  CAS  PubMed  Google Scholar 

  30. Vander Heiden MG, Chandel NS, Li XX, Schumacker PT, Colombini M, Thompson CB (2000) Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc Natl Acad Sci U S A 97:4666–4671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baize S, Leroy EM, Georges-Courbot MC, Capron M, Lansoud-Soukate J, Debre P et al (1999) Defective humoral responses and extensive intravascular apoptosis are associated with fatal outcome in Ebola virus-infected patients. Nat Med 5:423–426

    Article  CAS  PubMed  Google Scholar 

  32. de La Motte RT, Galluzzi L, Olaussen KA, Zermati Y, Tasdemir E, Robert T et al (2007) A novel epidermal growth factor receptor inhibitor promotes apoptosis in non-small cell lung cancer cells resistant to erlotinib. Cancer Res 67:6253–6262

    Article  Google Scholar 

  33. Tajeddine N, Galluzzi L, Kepp O, Hangen E, Morselli E, Senovilla L et al (2008) Hierarchical involvement of Bak, VDAC1 and Bax in cisplatin-induced cell death. Oncogene 27:4221–4232

    Article  CAS  PubMed  Google Scholar 

  34. Metivier D, Dallaporta B, Zamzami N, Larochette N, Susin SA, Marzo I et al (1998) Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-1-triggered apoptosis of Jurkat T lymphoma cells. Comparison of seven mitochondrion-specific fluorochromes. Immunol Lett 61:157–163

    Article  CAS  PubMed  Google Scholar 

  35. Scaduto RC Jr, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76:469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bicknell GR, Snowden RT, Cohen GM (1994) Formation of high molecular mass DNA fragments is a marker of apoptosis in the human leukaemic cell line, U937. J Cell Sci 107(Pt 9):2483–2489

    CAS  PubMed  Google Scholar 

  37. Schwartzman RA, Cidlowski JA (1993) Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr Rev 14:133–151

    CAS  PubMed  Google Scholar 

  38. Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–556

    Article  CAS  PubMed  Google Scholar 

  39. Oberhammer F, Wilson JW, Dive C, Morris ID, Hickman JA, Wakeling AE et al (1993) Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J 12:3679–3684

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cantor CR, Smith CL, Mathew MK (1988) Pulsed-field gel electrophoresis of very large DNA molecules. Annu Rev Biophys Biophys Chem 17:287–304

    Article  CAS  PubMed  Google Scholar 

  41. Carle GF, Frank M, Olson MV (1986) Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science 232:65–68

    Article  CAS  PubMed  Google Scholar 

  42. Collins AR (2002) The comet assay. Principles, applications, and limitations. Methods Mol Biol 203:163–177

    CAS  PubMed  Google Scholar 

  43. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  CAS  PubMed  Google Scholar 

  44. Negoescu A, Lorimier P, Labat-Moleur F, Drouet C, Robert C, Guillermet C et al (1996) In situ apoptotic cell labeling by the TUNEL method: improvement and evaluation on cell preparations. J Histochem Cytochem 44:959–968

    Article  CAS  PubMed  Google Scholar 

  45. Darzynkiewicz Z, Galkowski D, Zhao H (2008) Analysis of apoptosis by cytometry using TUNEL assay. Methods 44:250–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gorczyca W, Gong J, Ardelt B, Traganos F, Darzynkiewicz Z (1993) The cell cycle related differences in susceptibility of HL-60 cells to apoptosis induced by various antitumor agents. Cancer Res 53:3186–3192

    CAS  PubMed  Google Scholar 

  47. Bedner E, Smolewski P, Amstad P, Darzynkiewicz Z (2000) Activation of caspases measured in situ by binding of fluorochrome-labeled inhibitors of caspases (FLICA): correlation with DNA fragmentation. Exp Cell Res 259:308–313

    Article  CAS  PubMed  Google Scholar 

  48. Darzynkiewicz Z, Bedner E, Smolewski P, Lee BW, Johnson GL (2002) Detection of caspases activation in situ by fluorochrome-labeled inhibitors of caspases (FLICA). Methods Mol Biol 203:289–299

    CAS  PubMed  Google Scholar 

  49. Darzynkiewicz Z, Pozarowski P, Lee BW, Johnson GL (2011) Fluorochrome-labeled inhibitors of caspases: convenient in vitro and in vivo markers of apoptotic cells for cytometric analysis. Methods Mol Biol 682:103–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Barreiro-Iglesias A, Shifman MI (2012) Use of fluorochrome-labeled inhibitors of caspases to detect neuronal apoptosis in the whole-mounted lamprey brain after spinal cord injury. Enzyme Res 2012:835731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Barreiro-Iglesias A, Shifman MI (2015) Detection of activated caspase-8 in injured spinal axons by using fluorochrome-labeled inhibitors of caspases (FLICA). Methods Mol Biol 1254:329–339

    Article  CAS  PubMed  Google Scholar 

  52. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290

    Article  CAS  PubMed  Google Scholar 

  53. Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424

    Article  CAS  PubMed  Google Scholar 

  54. Liu J, Bhalgat M, Zhang C, Diwu Z, Hoyland B, Klaubert DH (1999) Fluorescent molecular probes V: a sensitive caspase-3 substrate for fluorometric assays. Bioorg Med Chem Lett 9:3231–3236

    Article  CAS  PubMed  Google Scholar 

  55. Boeneman K, Mei BC, Dennis AM, Bao G, Deschamps JR, Mattoussi H et al (2009) Sensing caspase 3 activity with quantum dot-fluorescent protein assemblies. J Am Chem Soc 131:3828–3829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee GH, Lee EJ, Hah SS (2014) TAMRA- and Cy5-labeled probe for efficient kinetic characterization of caspase-3. Anal Biochem 446:22–24

    Article  CAS  PubMed  Google Scholar 

  57. Elphick LM, Meinander A, Mikhailov A, Richard M, Toms NJ, Eriksson JE et al (2006) Live cell detection of caspase-3 activation by a Discosoma-red-fluorescent-protein-based fluorescence resonance energy transfer construct. Anal Biochem 349:148–155

    Article  CAS  PubMed  Google Scholar 

  58. Kawai H, Suzuki T, Kobayashi T, Sakurai H, Ohata H, Honda K et al (2005) Simultaneous real-time detection of initiator- and effector-caspase activation by double fluorescence resonance energy transfer analysis. J Pharmacol Sci 97:361–368

    Article  CAS  PubMed  Google Scholar 

  59. Xu X, Gerard AL, Huang BC, Anderson DC, Payan DG, Luo Y (1998) Detection of programmed cell death using fluorescence energy transfer. Nucleic Acids Res 26:2034–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. He L, Wu X, Meylan F, Olson DP, Simone J, Hewgill D et al (2004) Monitoring caspase activity in living cells using fluorescent proteins and flow cytometry. Am J Pathol 164:1901–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Luo KQ, Yu VC, Pu Y, Chang DC (2001) Application of the fluorescence resonance energy transfer method for studying the dynamics of caspase-3 activation during UV-induced apoptosis in living HeLa cells. Biochem Biophys Res Commun 283:1054–1060

    Article  CAS  PubMed  Google Scholar 

  62. Luo KQ, Yu VC, Pu Y, Chang DC (2003) Measuring dynamics of caspase-8 activation in a single living HeLa cell during TNFalpha-induced apoptosis. Biochem Biophys Res Commun 304:217–222

    Article  CAS  PubMed  Google Scholar 

  63. Wu X, Simone J, Hewgill D, Siegel R, Lipsky PE, He L (2006) Measurement of two caspase activities simultaneously in living cells by a novel dual FRET fluorescent indicator probe. Cytometry A 69:477–486

    Article  PubMed  CAS  Google Scholar 

  64. Jones J, Heim R, Hare E, Stack J, Pollok BA (2000) Development and application of a GFP-FRET intracellular caspase assay for drug screening. J Biomol Screen 5:307–318

    Article  CAS  PubMed  Google Scholar 

  65. Zhu X, Fu A, Luo KQ (2012) A high-throughput fluorescence resonance energy transfer (FRET)-based endothelial cell apoptosis assay and its application for screening vascular disrupting agents. Biochem Biophys Res Commun 418:641–646

    Article  CAS  PubMed  Google Scholar 

  66. Bozza WP, Di X, Takeda K, Rivera Rosado LA, Pariser S, Zhang B (2014) The use of a stably expressed FRET biosensor for determining the potency of cancer drugs. PLoS One 9, e107010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Hoff BA, Bhojani MS, Rudge J, Chenevert TL, Meyer CR, Galban S et al (2012) DCE and DW-MRI monitoring of vascular disruption following VEGF-Trap treatment of a rat glioma model. NMR Biomed 25:935–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Foroutan P, Kreahling JM, Morse DL, Grove O, Lloyd MC, Reed D et al (2013) Diffusion MRI and novel texture analysis in osteosarcoma xenotransplants predicts response to anti-checkpoint therapy. PLoS One 8, e82875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Chinnaiyan AM, Prasad U, Shankar S, Hamstra DA, Shanaiah M, Chenevert TL et al (2000) Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci U S A 97:1754–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim H, Morgan DE, Buchsbaum DJ, Zeng H, Grizzle WE, Warram JM et al (2008) Early therapy evaluation of combined anti-death receptor 5 antibody and gemcitabine in orthotopic pancreatic tumor xenografts by diffusion-weighted magnetic resonance imaging. Cancer Res 68:8369–8376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Oliver PG, LoBuglio AF, Zhou T, Forero A, Kim H, Zinn KR et al (2012) Effect of anti-DR5 and chemotherapy on basal-like breast cancer. Breast Cancer Res Treat 133:417–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang H, Galban S, Wu R, Bowman BM, Witte A, Vetter K et al (2013) Molecular imaging reveals a role for AKT in resistance to cisplatin for ovarian endometrioid adenocarcinoma. Clin Cancer Res 19:158–169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Zhang F, Zhu L, Liu G, Hida N, Lu G, Eden HS et al (2011) Multimodality imaging of tumor response to doxil. Theranostics 1:302–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schmitz JE, Kettunen MI, Hu DE, Brindle KM (2005) 1H MRS-visible lipids accumulate during apoptosis of lymphoma cells in vitro and in vivo. Magn Reson Med 54:43–50

    Article  CAS  PubMed  Google Scholar 

  75. Jagannathan NR, Singh M, Govindaraju V, Raghunathan P, Coshic O, Julka PK et al (1998) Volume localized in vivo proton MR spectroscopy of breast carcinoma: variation of water-fat ratio in patients receiving chemotherapy. NMR Biomed 11:414–422

    Article  CAS  PubMed  Google Scholar 

  76. Kumar M, Jagannathan NR, Seenu V, Dwivedi SN, Julka PK, Rath GK (2006) Monitoring the therapeutic response of locally advanced breast cancer patients: sequential in vivo proton MR spectroscopy study. J Magn Reson Imaging 24:325–332

    Article  PubMed  Google Scholar 

  77. Lyng H, Sitter B, Bathen TF, Jensen LR, Sundfor K, Kristensen GB et al (2007) Metabolic mapping by use of high-resolution magic angle spinning 1H MR spectroscopy for assessment of apoptosis in cervical carcinomas. BMC Cancer 7:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Zhai G, Kim H, Sarver D, Samuel S, Whitworth L, Umphrey H et al (2014) Early therapy assessment of combined anti-DR5 antibody and carboplatin in triple-negative breast cancer xenografts in mice using diffusion-weighted imaging and (1)H MR spectroscopy. J Magn Reson Imaging 39:1588–1594

    Article  PubMed  PubMed Central  Google Scholar 

  79. Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM et al (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182:1545–1556

    Article  CAS  PubMed  Google Scholar 

  80. Wood BL, Gibson DF, Tait JF (1996) Increased erythrocyte phosphatidylserine exposure in sickle cell disease: flow-cytometric measurement and clinical associations. Blood 88:1873–1880

    CAS  PubMed  Google Scholar 

  81. Blankenberg FG, Kalinyak J, Liu L, Koike M, Cheng D, Goris ML et al (2006) 99mTc-HYNIC-annexin V SPECT imaging of acute stroke and its response to neuroprotective therapy with anti-Fas ligand antibody. Eur J Nucl Med Mol Imaging 33:566–574

    Article  CAS  PubMed  Google Scholar 

  82. Blankenberg FG, Vanderheyden JL, Strauss HW, Tait JF (2006) Radiolabeling of HYNIC-annexin V with technetium-99m for in vivo imaging of apoptosis. Nat Protoc 1:108–110

    Article  CAS  PubMed  Google Scholar 

  83. Belhocine T, Steinmetz N, Green A, Rigo P (2003) In vivo imaging of chemotherapy-induced apoptosis in human cancers. Ann N Y Acad Sci 1010:525–529

    Article  CAS  PubMed  Google Scholar 

  84. Blankenberg FG, Katsikis PD, Tait JF, Davis RE, Naumovski L, Ohtsuki K et al (1998) In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc Natl Acad Sci U S A 95:6349–6354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kemerink GJ, Liu X, Kieffer D, Ceyssens S, Mortelmans L, Verbruggen AM et al (2003) Safety, biodistribution, and dosimetry of 99mTc-HYNIC-annexin V, a novel human recombinant annexin V for human application. J Nucl Med 44:947–952

    CAS  PubMed  Google Scholar 

  86. Ogura Y, Krams SM, Martinez OM, Kopiwoda S, Higgins JP, Esquivel CO et al (2000) Radiolabeled annexin V imaging: diagnosis of allograft rejection in an experimental rodent model of liver transplantation. Radiology 214:795–800

    Article  CAS  PubMed  Google Scholar 

  87. Belhocine T, Steinmetz N, Hustinx R, Bartsch P, Jerusalem G, Seidel L et al (2002) Increased uptake of the apoptosis-imaging agent (99m)Tc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin Cancer Res 8:2766–2774

    CAS  PubMed  Google Scholar 

  88. Blankenberg FG, Naumovski L, Tait JF, Post AM, Strauss HW (2001) Imaging cyclophosphamide-induced intramedullary apoptosis in rats using 99mTc-radiolabeled annexin V. J Nucl Med 42:309–316

    CAS  PubMed  Google Scholar 

  89. Luo QY, Zhang ZY, Wang F, Lu HK, Guo YZ, Zhu RS (2005) Preparation, in vitro and in vivo evaluation of (99m)Tc-Annexin B1: a novel radioligand for apoptosis imaging. Biochem Biophys Res Commun 335:1102–1106

    Article  CAS  PubMed  Google Scholar 

  90. Lahorte CM, Van de Wiele C, Bacher K, van den Bossche B, Thierens H, Van BS et al (2003) Biodistribution and dosimetry study of 123I-rh-annexin V in mice and humans. Nucl Med Commun 24:871–880

    CAS  PubMed  Google Scholar 

  91. Dekker B, Keen H, Lyons S, Disley L, Hastings D, Reader A et al (2005) MBP-annexin V radiolabeled directly with iodine-124 can be used to image apoptosis in vivo using PET. Nucl Med Biol 32:241–252

    Article  CAS  PubMed  Google Scholar 

  92. Dekker B, Keen H, Shaw D, Disley L, Hastings D, Hadfield J et al (2005) Functional comparison of annexin V analogues labeled indirectly and directly with iodine-124. Nucl Med Biol 32:403–413

    Article  CAS  PubMed  Google Scholar 

  93. Keen HG, Dekker BA, Disley L, Hastings D, Lyons S, Reader AJ et al (2005) Imaging apoptosis in vivo using 124I-annexin V and PET. Nucl Med Biol 32:395–402

    Article  CAS  PubMed  Google Scholar 

  94. Stafford JH, Hao G, Best AM, Sun X, Thorpe PE (2013) Highly specific PET imaging of prostate tumors in mice with an iodine-124-labeled antibody fragment that targets phosphatidylserine. PLoS One 8, e84864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Murakami Y, Takamatsu H, Taki J, Tatsumi M, Noda A, Ichise R et al (2004) 18F-labelled annexin V: a PET tracer for apoptosis imaging. Eur J Nucl Med Mol Imaging 31:469–474

    Article  CAS  PubMed  Google Scholar 

  96. Cauchon N, Langlois R, Rousseau JA, Tessier G, Cadorette J, Lecomte R et al (2007) PET imaging of apoptosis with (64)Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V. Eur J Nucl Med Mol Imaging 34:247–258

    Article  CAS  PubMed  Google Scholar 

  97. Assadi M, Nemati R, Nabipour I, Salimipour H, Amini A (2011) Radiolabeled annexin V imaging: a useful technique for determining apoptosis in multiple sclerosis. Med Hypotheses 77:43–46

    Article  CAS  PubMed  Google Scholar 

  98. Post AM, Katsikis PD, Tait JF, Geaghan SM, Strauss HW, Blankenberg FG (2002) Imaging cell death with radiolabeled annexin V in an experimental model of rheumatoid arthritis. J Nucl Med 43:1359–1365

    CAS  PubMed  Google Scholar 

  99. Lehner S, Todica A, Brunner S, Uebleis C, Wang H, Wangler C et al (2012) Temporal changes in phosphatidylserine expression and glucose metabolism after myocardial infarction: an in vivo imaging study in mice. Mol Imaging 11:461–470

    CAS  PubMed  Google Scholar 

  100. Lehner S, Todica A, Vanchev Y, Uebleis C, Wang H, Herrler T, et al. (2014) In vivo monitoring of parathyroid hormone treatment after myocardial infarction in mice with [68Ga]annexin A5 and [18F]fluorodeoxyglucose positron emission tomography. Mol Imaging 13

    Google Scholar 

  101. Lampl Y, Lorberboym M, Blankenberg FG, Sadeh M, Gilad R (2006) Annexin V SPECT imaging of phosphatidylserine expression in patients with dementia. Neurology 66:1253–1254

    Article  CAS  PubMed  Google Scholar 

  102. Belhocine T, Steinmetz N, Li C, Green A, Blankenberg FG (2004) The imaging of apoptosis with the radiolabeled annexin V: optimal timing for clinical feasibility. Technol Cancer Res Treat 3:23–32

    Article  CAS  PubMed  Google Scholar 

  103. Fang W, Wang F, Ji S, Zhu X, Meier HT, Hellman RS et al (2007) SPECT imaging of myocardial infarction using 99mTc-labeled C2A domain of synaptotagmin I in a porcine ischemia-reperfusion model. Nucl Med Biol 34:917–923

    Article  CAS  PubMed  Google Scholar 

  104. Wang F, Fang W, Zhang MR, Zhao M, Liu B, Wang Z et al (2011) Evaluation of chemotherapy response in VX2 rabbit lung cancer with 18F-labeled C2A domain of synaptotagmin I. J Nucl Med 52:592–599

    Article  CAS  PubMed  Google Scholar 

  105. Zhao M, Zhu X, Ji S, Zhou J, Ozker KS, Fang W et al (2006) 99mTc-labeled C2A domain of synaptotagmin I as a target-specific molecular probe for noninvasive imaging of acute myocardial infarction. J Nucl Med 47:1367–1374

    CAS  PubMed  Google Scholar 

  106. Hoebers FJ, Kartachova M, de Bois J, van den Brekel MW, van Tinteren H, van Herk M et al (2008) 99mTc Hynic-rh-Annexin V scintigraphy for in vivo imaging of apoptosis in patients with head and neck cancer treated with chemoradiotherapy. Eur J Nucl Med Mol Imaging 35:509–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rottey S, van den Bossche B, Slegers G, Van BS, Van de Wiele C (2009) Influence of chemotherapy on the biodistribution of [99mTc]hydrazinonicotinamide annexin V in cancer patients. Q J Nucl Med Mol Imaging 53:127–132

    CAS  PubMed  Google Scholar 

  108. Reshef A, Shirvan A, Akselrod-Ballin A, Wall A, Ziv I (2010) Small-molecule biomarkers for clinical PET imaging of apoptosis. J Nucl Med 51:837–840

    Article  CAS  PubMed  Google Scholar 

  109. Cohen A, Ziv I, Aloya T, Levin G, Kidron D, Grimberg H et al (2007) Monitoring of chemotherapy-induced cell death in melanoma tumors by N, N′-Didansyl-L-cystine. Technol Cancer Res Treat 6:221–234

    Article  CAS  PubMed  Google Scholar 

  110. Reshef A, Shirvan A, Grimberg H, Levin G, Cohen A, Mayk A et al (2007) Novel molecular imaging of cell death in experimental cerebral stroke. Brain Res 1144:156–164

    Article  CAS  PubMed  Google Scholar 

  111. Damianovich M, Ziv I, Heyman SN, Rosen S, Shina A, Kidron D et al (2006) ApoSense: a novel technology for functional molecular imaging of cell death in models of acute renal tubular necrosis. Eur J Nucl Med Mol Imaging 33:281–291

    Article  PubMed  PubMed Central  Google Scholar 

  112. Aloya R, Shirvan A, Grimberg H, Reshef A, Levin G, Kidron D et al (2006) Molecular imaging of cell death in vivo by a novel small molecule probe. Apoptosis 11:2089–2101

    Article  PubMed  PubMed Central  Google Scholar 

  113. Grimberg H, Levin G, Shirvan A, Cohen A, Yogev-Falach M, Reshef A et al (2009) Monitoring of tumor response to chemotherapy in vivo by a novel small-molecule detector of apoptosis. Apoptosis 14:257–267

    Article  CAS  PubMed  Google Scholar 

  114. Cohen A, Shirvan A, Levin G, Grimberg H, Reshef A, Ziv I (2009) From the Gla domain to a novel small-molecule detector of apoptosis. Cell Res 19:625–637

    Article  CAS  PubMed  Google Scholar 

  115. Hoglund J, Shirvan A, Antoni G, Gustavsson SA, Langstrom B, Ringheim A et al (2011) 18F-ML-10, a PET tracer for apoptosis: first human study. J Nucl Med 52:720–725

    Article  PubMed  Google Scholar 

  116. Cazzaniga M, Decensi A, Pruneri G, Puntoni M, Bottiglieri L, Varricchio C et al (2013) The effect of metformin on apoptosis in a breast cancer presurgical trial. Br J Cancer 109:2792–2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dai G, Tong Y, Chen X, Ren Z, Ying X, Yang F et al (2015) Myricanol induces apoptotic cell death and anti-tumor activity in non-small cell lung carcinoma in vivo. Int J Mol Sci 16:2717–2731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sooriakumaran P, Coley HM, Fox SB, Macanas-Pirard P, Lovell DP, Henderson A et al (2009) A randomized controlled trial investigating the effects of celecoxib in patients with localized prostate cancer. Anticancer Res 29:1483–1488

    CAS  PubMed  Google Scholar 

  119. Hight MR, Cheung YY, Nickels ML, Dawson ES, Zhao P, Saleh S et al (2014) A peptide-based positron emission tomography probe for in vivo detection of caspase activity in apoptotic cells. Clin Cancer Res 20:2126–2135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhou D, Chu W, Chen DL, Wang Q, Reichert DE, Rothfuss J et al (2009) [18F]- and [11C]-labeled N-benzyl-isatin sulfonamide analogues as PET tracers for apoptosis: synthesis, radiolabeling mechanism, and in vivo imaging study of apoptosis in Fas-treated mice using [11C]WC-98. Org Biomol Chem 7:1337–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhou D, Chu W, Rothfuss J, Zeng C, Xu J, Jones L et al (2006) Synthesis, radiolabeling, and in vivo evaluation of an 18F-labeled isatin analog for imaging caspase-3 activation in apoptosis. Bioorg Med Chem Lett 16:5041–5046

    Article  CAS  PubMed  Google Scholar 

  122. Nguyen QD, Smith G, Glaser M, Perumal M, Arstad E, Aboagye EO (2009) Positron emission tomography imaging of drug-induced tumor apoptosis with a caspase-3/7 specific [18F]-labeled isatin sulfonamide. Proc Natl Acad Sci U S A 106:16375–16380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chen DL, Engle JT, Griffin EA, Miller JP, Chu W, Zhou D et al (2015) Imaging Caspase-3 Activation as a Marker of Apoptosis-Targeted Treatment Response in Cancer. Mol Imaging Biol 17(3):384–393

    Article  CAS  PubMed  Google Scholar 

  124. Xia CF, Chen G, Gangadharmath U, Gomez LF, Liang Q, Mu F et al (2013) In vitro and in vivo evaluation of the caspase-3 substrate-based radiotracer [(18)F]-CP18 for PET imaging of apoptosis in tumors. Mol Imaging Biol 15:748–757

    Article  PubMed  Google Scholar 

Download references

Disclaimer

This chapter reflects the views of the author and should not be constructed to represent FDA’s views or policies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baolin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bozza, W.P., Twomey, J.D., Kim, SR., Zhang, B. (2016). Detection of Apoptosis: From Bench Side to Clinical Practice. In: Muganda, P. (eds) Apoptosis Methods in Toxicology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3588-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3588-8_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3586-4

  • Online ISBN: 978-1-4939-3588-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics