Skip to main content

Isolation of Cardiomyocytes and Cardiofibroblasts for Ex Vivo Analysis

  • Protocol
  • First Online:
Programmed Cell Death

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1419))

  • 3220 Accesses

Abstract

Heart failure (HF) is a common clinical endpoint to several underlying causes including aging, hypertension, stress, and cardiomyopathy. It is characterized by a significant decline in the cardiac output. Cardiomyocytes are terminally differentiated cells and therefore, apoptotic death due to beta adrenergic (β-AR) signaling contributes to high attrition rate of these cells. Past treatments of HF offer some survival benefit to patients (e.g., the beta blockers), but at the expense of blocking the compensatory beta-adrenergic signaling in surviving cells. One prerequisite for developing new therapeutics is to be able to grow cardiomyocytes ex vivo, and test their apoptotic response to drugs. Here we describe methods for isolation and culturing of neonatal and adult calcium tolerant cardiomyocytes. Similarly, cardiofibroblasts can also be isolated using the same protocol and subsequently, immortalized with SV40 T-Antigen for ex vivo studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kovacs A, Papp Z, Nagy L (2014) Causes and pathophysiology of heart failure with preserved ejection fraction. Heart Fail Clin 10(3):389–398

    Article  PubMed  Google Scholar 

  2. Butler J, Fonarow GC, Zile MR, Lam CS, Roessig L, Schelbert EB, Shah SJ, Ahmed A, Bonow RO, Cleland JG, Cody RJ, Chioncel O, Collins SP, Dunnmon P, Filippatos G, Lefkowitz MP, Marti CN, McMurray JJ, Misselwitz F, Nodari S, O’Connor C, Pfeffer MA, Pieske B, Pitt B, Rosano G, Sabbah HN, Senni M, Solomon SD, Stockbridge N, Teerlink JR, Georgiopoulou VV, Gheorghiade M (2014) Developing therapies for heart failure with preserved ejection fraction: current state and future directions. JACC Heart Fail 2(2):97–112

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sliwa K, Mayosi BM (2013) Recent advances in the epidemiology, pathogenesis and prognosis of acute heart failure and cardiomyopathy in Africa. Heart 99(18):1317–1322

    Article  PubMed  Google Scholar 

  4. Shiojima I (2012) Chronic heart failure: progress in diagnosis and treatment. Topics: I. Progress in epidemiology and fundamental research; 2. Molecular mechanisms of chronic heart failure. Nihon Naika Gakkai Zasshi 101(2):314–321

    Article  CAS  PubMed  Google Scholar 

  5. Vatta M, Stetson SJ, Perez-Verdia A, Entman ML, Noon GP, Torre-Amione G, Bowles NE, Towbin JA (2002) Molecular remodelling of dystrophin in patients with end-stage cardiomyopathies and reversal in patients on assistance-device therapy. Lancet 359(9310):936–941

    Article  CAS  PubMed  Google Scholar 

  6. Abbate A, Sinagra G, Bussani R, Hoke NN, Merlo M, Varma A, Toldo S, Salloum FN, Biondi-Zoccai GG, Vetrovec GW, Crea F, Silvestri F, Baldi A (2009) Apoptosis in patients with acute myocarditis. Am J Cardiol 104(7):995–1000

    Article  PubMed  Google Scholar 

  7. Gurtl B, Kratky D, Guelly C, Zhang L, Gorkiewicz G, Das SK, Tamilarasan KP, Hoefler G (2009) Apoptosis and fibrosis are early features of heart failure in an animal model of metabolic cardiomyopathy. Int J Exp Pathol 90(3):338–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reed BN, Sueta CA (2015) A practical guide for the treatment of symptomatic heart failure with reduced ejection fraction (HFrEF). Curr Cardiol Rev 11(1):23–32

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lee YY, Moujalled D, Doerflinger M, Gangoda L, Weston R, Rahimi A, de Alboran I, Herold M, Bouillet P, Xu Q, Gao X, Du XJ, Puthalakath H (2013) CREB-binding protein (CBP) regulates beta-adrenoceptor (beta-AR)-mediated apoptosis. Cell Death Differ 20(7):941–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zaragoza C, Gomez-Guerrero C, Martin-Ventura JL, Blanco-Colio L, Lavin B, Mallavia B, Tarin C, Mas S, Ortiz A, Egido J (2011) Animal models of cardiovascular diseases. J Biomed Biotechnol 2011:497841

    Article  PubMed  PubMed Central  Google Scholar 

  11. McGonigle P, Ruggeri B (2014) Animal models of human disease: challenges in enabling translation. Biochem Pharmacol 87(1):162–171

    Article  CAS  PubMed  Google Scholar 

  12. Watkins SJ, Borthwick GM, Arthur HM (2011) The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cell Dev Biol Anim 47(2):125–131

    Article  CAS  PubMed  Google Scholar 

  13. Zordoky BN, El-Kadi AO (2007) H9c2 cell line is a valuable in vitro model to study the drug metabolizing enzymes in the heart. J Pharmacol Toxicol Methods 56(3):317–322

    Article  CAS  PubMed  Google Scholar 

  14. Claycomb WC, Lanson NA Jr, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, Izzo NJ Jr (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci U S A 95(6):2979–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kimes BW, Brandt BL (1976) Properties of a clonal muscle cell line from rat heart. Exp Cell Res 98(2):367–381

    Article  CAS  PubMed  Google Scholar 

  16. Rao F, Deng CY, Wu SL, Xiao DZ, Yu XY, Kuang SJ, Lin QX, Shan ZX (2009) Involvement of Src in L-type Ca2+ channel depression induced by macrophage migration inhibitory factor in atrial myocytes. J Mol Cell Cardiol 47(5):586–594

    Article  CAS  PubMed  Google Scholar 

  17. Jacobson SL, Piper HM (1986) Cell cultures of adult cardiomyocytes as models of the myocardium. J Mol Cell Cardiol 18(7):661–678

    Article  CAS  PubMed  Google Scholar 

  18. O’Connell TD, Rodrigo MC, Simpson PC (2007) Isolation and culture of adult mouse cardiac myocytes. Methods Mol Biol 357:271–296

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Health and Medical Research Council Grant No. 1085281 to HP. GWM and CN are supported by La Trobe University Post graduate Research scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamsa Puthalakath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mbogo, G.W., Nedeva, C., Puthalakath, H. (2016). Isolation of Cardiomyocytes and Cardiofibroblasts for Ex Vivo Analysis. In: Puthalakath, H., Hawkins, C. (eds) Programmed Cell Death. Methods in Molecular Biology, vol 1419. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3581-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3581-9_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3579-6

  • Online ISBN: 978-1-4939-3581-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics