Skip to main content

Study Design for Sequencing Studies

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1418))

Abstract

Once a biochemical method has been devised to sample RNA or DNA of interest, sequencing can be used to identify the sampled molecules with high fidelity and low bias. High-throughput sequencing has therefore become the primary data acquisition method for many genomics studies and is being used more and more to address molecular biology questions. By applying principles of statistical experimental design, sequencing experiments can be made more sensitive to the effects under study as well as more biologically sound, hence more replicable.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Krzywinski M, Altman N (2013) Points of significance: importance of being uncertain. Nat Methods 10(9):809–810

    Article  CAS  PubMed  Google Scholar 

  2. Krzywinski M, Altman N (2013) Points of significance: significance, P values and t-tests. Nat Methods 10(11):1041–1042

    Article  CAS  PubMed  Google Scholar 

  3. Krzywinski M, Altman N (2013) Points of significance: power and sample size. Nat Methods 10(12):1139–1140

    Article  CAS  Google Scholar 

  4. Kulesa A et al (2015) Points of significance: sampling distributions and the bootstrap. Nat Methods 12(6):477–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Krzywinski M, Altman N (2014) Points of significance: designing comparative experiments. Nat Methods 11(6):597–598

    Article  CAS  PubMed  Google Scholar 

  6. Halsey LG et al (2015) The fickle P value generates irreproducible results. Nat Methods 12(3):179–185

    Article  CAS  PubMed  Google Scholar 

  7. Krzywinski M, Altman N (2013) Points of significance: error bars. Nat Methods 10(10):921–922

    Article  CAS  PubMed  Google Scholar 

  8. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Krzywinski M, Altman N (2014) Points of significance: analysis of variance and blocking. Nat Methods 11(7):699–700

    Article  CAS  PubMed  Google Scholar 

  10. Montgomery DC (2012) Design and analysis of experiments, 8th edn. Wiley, Hoboken, NJ

    Google Scholar 

  11. Kerr MK, Churchill GA (2001) Experimental design for gene expression microarrays. Biostatistics 2(2):183–201

    Article  PubMed  Google Scholar 

  12. Kerr MK, Churchill GA (2001) Statistical design and the analysis of gene expression microarray data. Genet Res 77(2):123–128

    CAS  PubMed  Google Scholar 

  13. Blainey P, Krzywinski M, Altman N (2014) Points of significance: replication. Nat Methods 11(9):879–880

    Article  CAS  PubMed  Google Scholar 

  14. Puga JL, Krzywinski M, Altman N (2015) Points of significance: Bayesian statistics. Nat Methods 12(12):277–278

    Article  CAS  Google Scholar 

  15. Biswas S et al (2013) Biological averaging in RNA-Seq. arXiv:1309.0670v2

    Google Scholar 

  16. Williams AG et al (2014) RNA-seq data: challenges in and recommendations for experimental design and analysis. Curr Protoc Hum Genet 83:11 13 1–11 13 20

    Article  Google Scholar 

  17. Altman N (2005) Replication, variation and normalisation in microarray experiments. Appl Bioinformatics 4(1):33–44

    Article  CAS  PubMed  Google Scholar 

  18. Normand R, Yanai I (2013) An introduction to high-throughput sequencing experiments: design and bioinformatics analysis. Methods Mol Biol 1038:1–26

    Article  PubMed  Google Scholar 

  19. Kremkow BG, Lee KH (2015) Sequencing technologies for animal cell culture research. Biotechnol Lett 37(1):55–65

    Article  CAS  PubMed  Google Scholar 

  20. Chilamakuri CS et al (2014) Performance comparison of four exome capture systems for deep sequencing. BMC Genomics 15:449

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wall PK et al (2009) Comparison of next generation sequencing technologies for transcriptome characterization. BMC Genomics 10:347

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schroeder A et al (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wilfinger WW, Mackey K, Chomczynski P (1997) Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. Biotechniques 22(3):474–476, 478–481

    CAS  PubMed  Google Scholar 

  24. Auer PL, Doerge RW (2010) Statistical design and analysis of RNA sequencing data. Genetics 185(2):405–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nettleton D (2014) Design of RNA sequencing experiments. In: Nettleton D, Datta S (eds) Statistical analysis of next generation sequencing data. Springer, New York

    Google Scholar 

  26. Sims D et al (2014) Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet 15(2):121–132

    Article  CAS  PubMed  Google Scholar 

  27. Wendl MC et al (2001) Theories and applications for sequencing randomly selected clones. Genome Res 11(2):274–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wendl MC, Waterston RH (2002) Generalized gap model for bacterial artificial chromosome clone fingerprint mapping and shotgun sequencing. Genome Res 12(12):1943–1949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wendl MC, Wilson RK (2008) Aspects of coverage in medical DNA sequencing. BMC Bioinformatics 9:239

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lander ES, Waterman MS (1988) Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 2(3):231–239

    Article  CAS  PubMed  Google Scholar 

  31. Balding DJ, Torney DC (1991) Statistical analysis of DNA fingerprint data for ordered clone physical mapping of human chromosomes. Bull Math Biol 53(6):853–879

    Article  CAS  PubMed  Google Scholar 

  32. Marioni JC et al (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18(9):1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Honaas LA, Wafula EK, Wickett NJ, Der JP, Zhang Y, et al. (2016) Selecting Superior De Novo Transcriptome Assemblies: Lessons Learned by Leveraging the Best Plant Genome. PLoS ONE 11(1): e0146062. doi: 10.1371/journal.pone.0146062

    Google Scholar 

  34. Hansen KD, Brenner SE, Dudoit S (2010) Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res 38(12):e131

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu Y, Zhou J, White KP (2014) RNA-seq differential expression studies: more sequence or more replication? Bioinformatics 30(3):301–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ajay SS et al (2011) Accurate and comprehensive sequencing of personal genomes. Genome Res 21(9):1498–1505

    Article  PubMed  PubMed Central  Google Scholar 

  37. Meynert AM et al (2014) Variant detection sensitivity and biases in whole genome and exome sequencing. BMC Bioinformatics 15:247

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi S. Altman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Honaas, L.A., Altman, N.S., Krzywinski, M. (2016). Study Design for Sequencing Studies. In: Mathé, E., Davis, S. (eds) Statistical Genomics. Methods in Molecular Biology, vol 1418. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3578-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3578-9_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3576-5

  • Online ISBN: 978-1-4939-3578-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics