Skip to main content

Experimental Design and Power Calculation for RNA-seq Experiments

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1418))

Abstract

Power calculation is a critical component of RNA-seq experimental design. The flexibility of RNA-seq experiment and the wide dynamic range of transcription it measures make it an attractive technology for whole transcriptome analysis. These features, in addition to the high dimensionality of RNA-seq data, bring complexity in experimental design, making an analytical power calculation no longer realistic. In this chapter we review the major factors that influence the statistical power of detecting differential expression, and give examples of power assessment using the R package PROPER.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Notes

  1. 1.

    ExpressionSet is a basic class of object used in Bioconductor. See http://www.bioconductor.org/packages/release/bioc/vignettes/Biobase/inst/doc/ExpressionSetIntroduction.pdf for more details

References

  1. Hansen KD, Wu Z, Irizarry RA, Leek JT (2011) Sequencing technology does not eliminate biological variability. Nat Biotechnol 29(7):572–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wu H, Wang C, Wu Z (2013) A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data. Biostatistics 14(2):232–243

    Article  PubMed  PubMed Central  Google Scholar 

  4. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40(10):4288–4297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fang Z, Cui X (2011) Design and validation issues in RNA-seq experiments. Brief Bioinform 12(3):280–287

    Article  CAS  PubMed  Google Scholar 

  8. Hart SN, Therneau TM, Zhang Y, Poland GA, Kocher J-P (2013) Calculating sample size estimates for RNA sequencing data. J Comput Biol 20(12):970–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li C-I, Su P-F, Shyr Y (2013) Sample size calculation based on exact test for assessing differential expression analysis in RNA-seq data. BMC Bioinformatics 14(1):357

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li C-I, Su P-F, Guo Y, Shyr Y (2013) Sample size calculation for differential expression analysis of RNA-seq data under Poisson distribution. Int J Comput Biol Drug Des 6(4):358–375

    Article  PubMed  Google Scholar 

  11. Frazee AC, Langmead B, Leek JT (2011) ReCount: a multi-experiment resource of analysis-ready RNA-seq gene count datasets. BMC Bioinformatics 12(1):449

    Article  PubMed  PubMed Central  Google Scholar 

  12. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wu, Z., Wu, H. (2016). Experimental Design and Power Calculation for RNA-seq Experiments. In: Mathé, E., Davis, S. (eds) Statistical Genomics. Methods in Molecular Biology, vol 1418. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3578-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3578-9_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3576-5

  • Online ISBN: 978-1-4939-3578-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics