Skip to main content

Data Mining of Macromolecular Structures

  • Protocol
  • First Online:
Data Mining Techniques for the Life Sciences

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1415))

Abstract

The use of macromolecular structures is widespread for a variety of applications, from teaching protein structure principles all the way to ligand optimization in drug development. Applying data mining techniques on these experimentally determined structures requires a highly uniform, standardized structural data source. The Protein Data Bank (PDB) has evolved over the years toward becoming the standard resource for macromolecular structures. However, the process selecting the data most suitable for specific applications is still very much based on personal preferences and understanding of the experimental techniques used to obtain these models. In this chapter, we will first explain the challenges with data standardization, annotation, and uniformity in the PDB entries determined by X-ray crystallography. We then discuss the specific effect that crystallographic data quality and model optimization methods have on structural models and how validation tools can be used to make informed choices. We also discuss specific advantages of using the PDB_REDO databank as a resource for structural data. Finally, we will provide guidelines on how to select the most suitable protein structure models for detailed analysis and how to select a set of structure models suitable for data mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blundell T, Carney D, Gardner S et al (1988) Knowledge-based protein modelling and design. Eur J Biochem 172(3):513–520

    Article  CAS  PubMed  Google Scholar 

  2. Kier LB (1967) Molecular orbital calculation of preferred conformations of acetylcholine, muscarine, and muscarone. Mol Pharmacol 3(5):487–494

    CAS  PubMed  Google Scholar 

  3. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7(1):95–99

    Article  CAS  PubMed  Google Scholar 

  4. Read R, Adams P, Arendall W et al (2011) A new generation of crystallographic validation tools for the Protein Data Bank. Structure 19(10):1395–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bernstein FC, Koetzle TF, Williams GJ et al (1977) The protein data bank. Eur J Biochem 80(2):319–324

    Article  CAS  PubMed  Google Scholar 

  6. Bank PD (1971) Protein Data Bank. Nat New Biol 233:223

    Google Scholar 

  7. Güntert P (2009) Automated structure determination from NMR spectra. Eur Biophys J 38(2):129–143

    Article  PubMed  CAS  Google Scholar 

  8. Joachimiak A (2009) High-throughput crystallography for structural genomics. Curr Opin Struct Biol 19(5):573–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Montelione G, Nilges M, Bax A et al (2013) Recommendations of the wwPDB NMR Validation Task Force. Structure 21(9):1563–1570

    Article  CAS  PubMed  Google Scholar 

  10. Henderson R, Sali A, Baker M et al (2012) Outcome of the first electron microscopy Validation Task Force meeting. Structure 20(2):205–214

    Article  CAS  PubMed  Google Scholar 

  11. Brünger A (1992) Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355:472–475

    Article  PubMed  Google Scholar 

  12. Bhat T, Bourne P, Feng Z et al (2001) The PDB data uniformity project. Nucleic Acids Res 29(1):214–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Westbrook J, Fen Z, Jain S et al (2002) The Protein Data Bank: unifying the archive. Nucleic Acids Res 30(1):245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Henrick K, Feng Z, Bluhm WF et al (2007) Remediation of the protein data bank archive. Nucleic Acids Res 36(Database):D426–D433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Joosten RP, Vriend G (2007) PDB improvement starts with data deposition. Science 317(5835):195–196

    Article  CAS  PubMed  Google Scholar 

  16. Joosten RP, Joosten K, Murshudov GN, Perrakis A (2012) PDB_REDO: constructive validation, more than just looking for errors. Acta Crystallogr D Biol Crystallogr 68(4):484–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Joosten RP, Long F, Murshudov GN, Perrakis A (2014) The PDB_REDO server for macromolecular structure model optimization. IUCrJ 1(4):213–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ma C, Chang G (2007) Retraction for Ma and Chang, Structure of the multidrug resistance efflux transporter EmrE from Escherichia coli. Proc Natl Acad Sci U S A 104(9):3668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chang G (2007) Retraction of structure of MsbA from Vibrio cholera: a multidrug resistance ABC transporter homolog in a closed conformation [J. Mol. Biol. (2003) 330 419–430]. J Mol Biol 369(2):596

    Article  CAS  PubMed  Google Scholar 

  20. Baker EN, Dauter Z, Einspahr H, Weiss MS (2010) In defence of our science—validation now! Acta Crystallogr D Biol Crystallogr 66(D):115

    Article  CAS  PubMed  Google Scholar 

  21. Richardson JS, Prisant MG, Richardson DC (2013) Crystallographic model validation: from diagnosis to healing. Curr Opin Struct Biol 23(5):707–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang H, Guranovic V, Dutta S et al (2004) Automated and accurate deposition of structures solved by X-ray diffraction to the Protein Data Bank. Acta Crystallogr D Biol Crystallogr 60(10):1833–1839

    Article  PubMed  CAS  Google Scholar 

  23. Rupp B (2012) Detection and analysis of unusual features in the structural model and structure-factor data of a birch pollen allergen. Acta Crystallogr Sect F Struct Biol Cryst Commun 68(4):366–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jmol: an open-source Java viewer for chemical structures in 3d. http://www.jmol.org/

  25. Schrödinger L (2015) The PyMOL molecular graphics system, version 1.3

    Google Scholar 

  26. McNicholas S, Potterton E, Wilson KS, Noble MEM (2011) Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr D Biol Crystallogr 67(4):386–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60(12):2126–2132

    Article  PubMed  CAS  Google Scholar 

  28. Kleywegt GJ, Harris MR, Zou J-Y et al (2004) The Uppsala electron-density server. Acta Crystallogr D Biol Crystallogr 60(12):2240–2249

    Article  PubMed  CAS  Google Scholar 

  29. Sander C, Schneider R (1993) The HSSP data base of protein structure-sequence alignments. Nucleic Acids Res 21(13):3105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang G, Dunbrack RL (2003) PISCES: a protein sequence culling server. Bioinformatics 19(12):1589–1591

    Article  CAS  PubMed  Google Scholar 

  31. Yanover C, Vanetik N, Levitt M et al (2014) Redundancy-weighting for better inference of protein structural features. Bioinformatics 30(16):2295–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Miyazawa S, Jernigan RL (1996) Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J Mol Biol 256(3):623–644

    Article  CAS  PubMed  Google Scholar 

  33. Miyazawa S, Jernigan RL (1999) Self-consistent estimation of inter-residue protein contact energies based on an equilibrium mixture approximation of residues. Proteins 34(1):49–68

    Article  CAS  PubMed  Google Scholar 

  34. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Berman HM, Henrick K, Nakamura H, Markley JL (2007) The woldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res 35(D):301–303

    Article  Google Scholar 

  36. de Beer TAP, Berka K, Thornton JM, Laskowski RA (2014) PDBsum additions. Nucleic Acids Res 42(D1):D292–D296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Gutmanas A, Oldfield TJ, Patwardhan A et al (2013) The role of structural bioinformatics resources in the era of integrative structural biology. Acta Crystallogr D Biol Crystallogr 69(5):710–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Joosten RP, Womack T, Vriend G, Bricogne G (2009) Re-refinement from deposited X-ray data can deliver improved models for most PDB entries. Acta Crystallogr D Biol Crystallogr 65(2):176–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nabuurs SB, Nederveen AJ, Vranken W et al (2004) DRESS: a database of REfined solution NMR structures. Proteins 55(3):483–486

    Article  CAS  PubMed  Google Scholar 

  40. Nederveen AJ, Doreleijers JF, Vranken W et al (2005) RECOORD: a recalculated coordinate database of 500+ proteins from the PDB using restraints from the BioMagResBank. Proteins 59(4):662–672

    Article  CAS  PubMed  Google Scholar 

  41. Bernard A, Vranken WF, Bardiaux B et al (2011) Bayesian estimation of NMR restraint potential and weight: a validation on a representative set of protein structures. Proteins 79(5):1525–1537

    Article  CAS  PubMed  Google Scholar 

  42. Hooft RW, Sander C, Vriend G (1997) Objectively judging the quality of a protein structure from a Ramachandran plot. CABIOS 13(4):425–430

    CAS  PubMed  Google Scholar 

  43. Berman HM, Kleywegt GJ, Nakamura H, Markley JL (2013) The future of the protein data bank. Biopolymers 99(3):218–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gore S, Velankar S, Kleywegt GJ (2012) Implementing an X-ray validation pipeline for the Protein Data Bank. Acta Crystallogr D Biol Crystallogr 68(4):478–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dutta S, Burkhardt K, Young J et al (2009) Data deposition and annotation at the worldwide Protein Data Bank. Mol Biotechnol 42(1):1–13

    Article  CAS  PubMed  Google Scholar 

  46. Berman HM, Kleywegt GJ, Nakamura H, Markley JL (2014) The Protein Data Bank archive as an open data resource. J Comput Aided Mol Des 28(10):1009–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Westbrook JD, Fitzgerald PMD (2003) The PDB format, mmCIF formats, and other data formats. In: Bourne PE, Weissig H (eds) Structural bioinformatics. Wiley, Chichester, UK

    Google Scholar 

  48. Bolin JT, Filman DJ, Matthews DA et al (1982) Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7 Ǻ resolution. J Biol Chem 257(22):13650–13662

    CAS  PubMed  Google Scholar 

  49. Joosten RP, Chinea G, Kleywegt GJ, Vriend G (2013) Protein three-dimensional structure validation. In: Reedijk J (ed) Comprehensive medicinal chemistry II. Elsevier, Oxford, UK

    Google Scholar 

  50. Dauter Z (2013) Placement of molecules in (not out of) the cell. Acta Crystallogr D Biol Crystallogr 69(1):2–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lawson CL, Dutta S, Westbrook JD et al (2008) Representation of viruses in the remediated PDB archive. Acta Crystallogr D Biol Crystallogr 64(8):874–882

    Article  CAS  PubMed Central  Google Scholar 

  52. Westbrook J, Ito N, Nakamura H et al (2005) PDBML: the representation of archival macromolecular structure data in XML. Bioinformatics 21(7):988–992

    Article  CAS  PubMed  Google Scholar 

  53. Berntsen KRM, Vriend G (2014) Anomalies in the refinement of isoleucine. Acta Crystallogr D Biol Crystallogr 70(4):1037–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tickle IJ (2012) Statistical quality indicators for electron-density maps. Acta Crystallogr D Biol Crystallogr 68(4):454–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dauter Z, Wlodawer A, Minor W et al (2014) Avoidable errors in deposited macromolecular structures: an impediment to efficient data mining. IUCrJ 1(3):179–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rupp B (2010) Scientific inquiry, inference and critical reasoning in the macromolecular crystallography curriculum. J Appl Crystallogr 43(5):1242–1249

    Article  CAS  Google Scholar 

  57. Pruett PS, Azzi A, Clark SA et al (2003) The putative catalytic bases have, at most, an accessory role in the mechanism of arginine kinase. J Biol Chem 278(29):26952–26957

    Article  CAS  PubMed  Google Scholar 

  58. Velankar S, Dana JM, Jacobsen J et al (2013) SIFTS: structure integration with function, taxonomy and sequences resource. Nucleic Acids Res 41(D1):D483–D489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. The UniProt Consortium (2014) Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res 42(D1):D191–D198

    Article  PubMed Central  CAS  Google Scholar 

  60. Evans PR (2011) An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr D Biol Crystallogr 67(4):282–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kraft P, Bergamaschi A, Broennimann C et al (2009) Performance of single-photon-counting PILATUS detector modules. J Synchrotron Radiat 16(3):368–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Domagalski MJ, Zheng H, Zimmerman MD et al (2014) The quality and validation of structures from structural genomics. In: Chen YW (ed) Structural genomics. Humana Press, New York

    Google Scholar 

  63. Karplus PA, Diederichs K (2012) Linking crystallographic model and data quality. Science 336(6084):1030–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Evans PR, Murshudov GN (2013) How good are my data and what is the resolution? Acta Crystallogr D Biol Crystallogr 69(7):1204–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Read RJ, McCoy AJ (2011) Using SAD data in Phaser. Acta Crystallogr D Biol Crystallogr 67(4):338–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu Q, Dahmane T, Zhang Z et al (2012) Structures from anomalous diffraction of native biological macromolecules. Science 336(6084):1033–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Perrakis A, Morris R, Lamzin VS (1999) Automated protein model building combined with iterative structure refinement. Nat Struct Mol Biol 6(5):458–463

    Article  CAS  Google Scholar 

  68. Cowtan K (2006) The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr 62(9):1002–1011

    Article  PubMed  CAS  Google Scholar 

  69. Terwilliger T (2004) SOLVE and RESOLVE: automated structure solution, density modification and model building. J Synchrotron Radiat 11(1):49–52

    Article  CAS  PubMed  Google Scholar 

  70. Parkinson G, Vojtechovsky J, Clowney L et al (1996) New parameters for the refinement of nucleic acid-containing structures. Acta Crystallogr D Biol Crystallogr 52(1):57–64

    Article  CAS  PubMed  Google Scholar 

  71. Kleywegt GJ (1996) Use of non-crystallographic symmetry in protein structure refinement. Acta Crystallogr D Biol Crystallogr 52(4):842–857

    Article  CAS  PubMed  Google Scholar 

  72. Smart OS, Womack TO, Flensburg C et al (2012) Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER. Acta Crystallogr D Biol Crystallogr 68(4):368–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Joosten RP, Joosten K, Cohen SX et al (2011) Automatic rebuilding and optimization of crystallographic structures in the Protein Data Bank. Bioinformatics 27(24):3392–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hamilton WC (1965) Significance tests on the crystallographic R factor. Acta Crystallogr 18(3):502–510

    Article  CAS  Google Scholar 

  75. Merritt EA (2012) To B or not to B: a question of resolution? Acta Crystallogr D Biol Crystallogr 68(4):468–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291

    Article  CAS  Google Scholar 

  77. Hooft RWW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381:272

    Article  CAS  PubMed  Google Scholar 

  78. Chen VB, Arendall WB, Headd JJ et al (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66(1):12–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jones TA, Zou J-Y, Cowan SW, Kjeldgaard M (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47(2):110–119

    Article  PubMed  Google Scholar 

  80. Krieger E, Koraimann G, Vriend G (2002) Increasing the precision of comparative models with YASARA NOVA—a self-parameterizing force field. Proteins 47(3):393–402

    Article  CAS  PubMed  Google Scholar 

  81. Joosten RP, te Beek TAH, Krieger E et al (2011) A series of PDB related databases for everyday needs. Nucleic Acids Res 39:D411–D419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Brändén C, Jones TA (1990) Between objectivity and subjectivity. Nature 343:687–689

    Article  Google Scholar 

  83. Touw WG, Baakman C, Black J et al (2014) A series of PDB-related databanks for everyday needs. Nucleic Acids Res 43(Database issue):D364–D368

    PubMed  PubMed Central  Google Scholar 

  84. Pozharski E, Weichenberger CX, Rupp B (2013) Techniques, tools and best practices for ligand electron-density analysis and results from their application to deposited crystal structures. Acta Crystallogr D Biol Crystallogr 69(2):150–167

    Article  CAS  PubMed  Google Scholar 

  85. Cereto-Massagué A, Ojeda MJ, Joosten RP et al (2013) The good, the bad and the dubious: VHELIBS, a validation helper for ligands and binding sites. J Cheminform 5:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Kleywegt GJ, Harris MR (2007) ValLigURL: a server for ligand-structure comparison and validation. Acta Crystallogr D Biol Crystallogr 63(8):935–938

    Article  CAS  PubMed  Google Scholar 

  87. Danley DE (2006) Crystallization to obtain protein-ligand complexes for structure-aided drug design. Acta Crystallogr D Biol Crystallogr 62(6):569–575

    Article  PubMed  CAS  Google Scholar 

  88. Warren GL, Do TD, Kelley BP et al (2012) Essential considerations for using protein-ligand structures in drug discovery. Drug Discov Today 17(23-24):1270–1281

    Article  CAS  PubMed  Google Scholar 

  89. Hartshorn MJ, Verdonk ML, Chessari G et al (2007) Diverse, high-quality test set for the validation of protein-ligand docking performance. J Med Chem 50(4):726–741

    Article  CAS  PubMed  Google Scholar 

  90. Smart OS, Bricogne G (2015) Achieving high quality ligand chemistry in protein-ligand crystal structures for drug design. In: Scapin G, Patel D, Arnold E (eds) Multifaceted roles of crystallography in modern drug discovery. Springer, New York

    Google Scholar 

  91. Allen FH (2002) The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr B Struct Sci 58(3):380–388

    Article  CAS  Google Scholar 

  92. Weichenberger CX, Pozharski E, Rupp B (2013) Visualizing ligand molecules in twilight electron density. Acta Crystallogr Sect F Struct Biol Cryst Commun 69(2):195–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bruno I, Cole J, Kessler M et al (2004) Retrieval of crystallographically-derived molecular geometry information. J Chem Inf Model 44(6):2133–2144

    CAS  Google Scholar 

  94. Sehnal D, Svobodová Vařeková R, Pravda L et al (2014) ValidatorDB: database of up-to-date validation results for ligands and non-standard residues from the Protein Data Bank. Nucleic Acids Res 43(Database issue):D369–D375

    PubMed  PubMed Central  Google Scholar 

  95. Lütteke T, Von Der Lieth C-W (2004) pdb-care (PDB CArbohydrate REsidue check): a program to support annotation of complex carbohydrate structures in PDB files. BMC Bioinformatics 5(1):69

    Article  PubMed  PubMed Central  Google Scholar 

  96. Agirre J, Cowtan K (2015) Validation of carbohydrate structures in CCP4 6.5. Comput Crystallogr Newsl 6:10–12

    Google Scholar 

  97. Lutteke T (2004) Carbohydrate Structure Suite (CSS): analysis of carbohydrate 3d structures derived from the PDB. Nucleic Acids Res 33(Database issue):D242–D246

    Article  PubMed Central  CAS  Google Scholar 

  98. Zheng H, Chordia MD, Cooper DR et al (2013) Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server. Nat Protoc 9(1):156–170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Andreini C, Cavallaro G, Lorenzini S, Rosato A (2013) MetalPDB: a database of metal sites in biological macromolecular structures. Nucleic Acids Res 41(D1):D312–D319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hsin K, Sheng Y, Harding MM et al (2008) MESPEUS: a database of the geometry of metal sites in proteins. J Appl Crystallogr 41(5):963–968

    Article  CAS  Google Scholar 

  101. Block P, Sotriffer CA, Dramburg I, Klebe G (2006) AffinDB: a freely accessible database of affinities for protein-ligand complexes from the PDB. Nucleic Acids Res 34(90001):D522–D526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Joosten RP, Salzemann J, Bloch V et al (2009) PDB_REDO: automated re-refinement of X-ray structure models in the PDB. J Appl Crystallogr 42(3):376–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Afonine PV, Grosse-Kunstleve RW, Chen VB et al (2010) Phenix.model_vs_data: a high-level tool for the calculation of crystallographic model and data statistics. J Appl Crystallogr 43(4):669–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by VIDI grant 723.013.003 from the Netherlands Organisation for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robbie P. Joosten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

van Beusekom, B., Perrakis, A., Joosten, R.P. (2016). Data Mining of Macromolecular Structures. In: Carugo, O., Eisenhaber, F. (eds) Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol 1415. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3572-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3572-7_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3570-3

  • Online ISBN: 978-1-4939-3572-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics