Skip to main content

Applications of Protein Thermodynamic Database for Understanding Protein Mutant Stability and Designing Stable Mutants

  • Protocol
  • First Online:
Data Mining Techniques for the Life Sciences

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1415))

Abstract

Protein stability is the free energy difference between unfolded and folded states of a protein, which lies in the range of 5–25 kcal/mol. Experimentally, protein stability is measured with circular dichroism, differential scanning calorimetry, and fluorescence spectroscopy using thermal and denaturant denaturation methods. These experimental data have been accumulated in the form of a database, ProTherm, thermodynamic database for proteins and mutants. It also contains sequence and structure information of a protein, experimental methods and conditions, and literature information. Different features such as search, display, and sorting options and visualization tools have been incorporated in the database. ProTherm is a valuable resource for understanding/predicting the stability of proteins and it can be accessed at http://www.abren.net/protherm/. ProTherm has been effectively used to examine the relationship among thermodynamics, structure, and function of proteins. We describe the recent progress on the development of methods for understanding/predicting protein stability, such as (1) general trends on mutational effects on stability, (2) relationship between the stability of protein mutants and amino acid properties, (3) applications of protein three-dimensional structures for predicting their stability upon point mutations, (4) prediction of protein stability upon single mutations from amino acid sequence, and (5) prediction methods for addressing double mutants. A list of online resources for predicting has also been provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Casadio R, Compiani M, Fariselli P, Vivarelli F (1995) Predicting free energy contributions to the conformational stability of folded proteins from the residue sequence with radial basis function networks. Proc Int Conf Intell Syst Mol Biol 3:81–88

    CAS  PubMed  Google Scholar 

  2. Pfeil W (1998) Protein stability and folding: a collection of thermodynamic data. Springer, New York, NY

    Book  Google Scholar 

  3. Gromiha MM, An J, Kono H, Oobatake M, Uedaira H, Sarai A (1999) ProTherm: thermodynamic database for proteins and mutants. Nucleic Acids Res 27(1):286–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kumar MD, Bava KA, Gromiha MM, Prabakaran P, Kitajima K, Uedaira H, Sarai A (2006) ProTherm and ProNIT: thermodynamic databases for proteins and protein-nucleic acid interactions. Nucleic Acids Res 34(Database issue):D204–D206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gromiha MM, Sarai A (2010) Thermodynamic database for proteins: features and applications. Methods Mol Biol 609:97–112

    Article  CAS  PubMed  Google Scholar 

  6. Gromiha MM (2007) Prediction of protein stability upon point mutations. Biochem Soc Trans 35(Pt 6):1569–1573

    Article  CAS  PubMed  Google Scholar 

  7. Gromiha MM (2009) Revisiting “reverse hydrophobic effect”: applicable only to coil mutations at the surface. Biopolymers 91(7):591–599

    Article  CAS  PubMed  Google Scholar 

  8. Guerois R, Nielsen JE, Serrano L (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320(2):369–387

    Article  CAS  PubMed  Google Scholar 

  9. Bordner AJ, Abagyan RA (2004) Large-scale prediction of protein geometry and stability changes for arbitrary single point mutations. Proteins 57(2):400–413

    Article  CAS  PubMed  Google Scholar 

  10. Zhou H, Zhou Y (2002) Stability scale and atomic solvation parameters extracted from 1023 mutation experiments. Proteins 49(4):483–492

    Article  CAS  PubMed  Google Scholar 

  11. Khatun J, Khare SD, Dokholyan NV (2004) Can contact potentials reliably predict stability of proteins? J Mol Biol 336(5):1223–1238

    Article  CAS  PubMed  Google Scholar 

  12. Capriotti E, Fariselli P, Casadio R (2004) A neural-network-based method for predicting protein stability changes upon single point mutations. Bioinformatics 20(Suppl 1):i63–i68

    Article  CAS  PubMed  Google Scholar 

  13. Capriotti E, Fariselli P, Calabrese R, Casadio R (2005) Predicting protein stability changes from sequences using support vector machines. Bioinformatics 21(Suppl 2):ii54–ii58

    Article  CAS  PubMed  Google Scholar 

  14. Cheng J, Randall A, Baldi P (2006) Prediction of protein stability changes for single-site mutations using support vector machines. Proteins 62(4):1125–1132

    Article  CAS  PubMed  Google Scholar 

  15. Saraboji K, Gromiha MM, Ponnuswamy MN (2005) Relative importance of secondary structure and solvent accessibility to the stability of protein mutants. A case study with amino acid properties and energetics on T4 and human lysozymes. Comput Biol Chem 29(1):25–35

    Article  CAS  PubMed  Google Scholar 

  16. Saraboji K, Gromiha MM, Ponnuswamy MN (2006) Average assignment method for predicting the stability of protein mutants. Biopolymers 82(1):80–92

    Article  CAS  PubMed  Google Scholar 

  17. Caballero J, Fernandez L, Abreu JI, Fernandez M (2006) Amino acid sequence autocorrelation vectors and ensembles of Bayesian-regularized genetic neural networks for prediction of conformational stability of human lysozyme mutants. J Chem Inf Model 46(3):1255–1268

    Article  CAS  PubMed  Google Scholar 

  18. Parthiban V, Gromiha MM, Hoppe C, Schomburg D (2007) Structural analysis and prediction of protein mutant stability using distance and torsion potentials: role of secondary structure and solvent accessibility. Proteins 66(1):41–52

    Article  CAS  PubMed  Google Scholar 

  19. Huang LT, Gromiha MM, Ho SY (2007) iPTREE-STAB: interpretable decision tree based method for predicting protein stability changes upon mutations. Bioinformatics 23(10):1292–1293

    Article  CAS  PubMed  Google Scholar 

  20. Yin S, Ding F, Dokholyan NV (2007) Eris: an automated estimator of protein stability. Nat Methods 4(6):466–467

    Article  CAS  PubMed  Google Scholar 

  21. Bava KA, Gromiha MM, Uedaira H, Kitajima K, Sarai A (2004) ProTherm, version 4.0: thermodynamic database for proteins and mutants. Nucleic Acids Res 32(Database issue):D120–D121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barker WC, Garavelli JS, Huang H, McGarvey PB, Orcutt BC, Srinivasarao GY, Xiao C, Yeh LS, Ledley RS, Janda JF, Pfeiffer F, Mewes HW, Tsugita A, Wu C (2000) The protein information resource (PIR). Nucleic Acids Res 28(1):41–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bairoch A, Apweiler R (2000) The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 28(1):45–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schomburg I, Chang A, Hofmann O, Ebeling C, Ehrentreich F, Schomburg D (2002) BRENDA: a resource for enzyme data and metabolic information. Trends Biochem Sci 27(1):54–56

    Article  CAS  PubMed  Google Scholar 

  26. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577–2637

    Article  CAS  PubMed  Google Scholar 

  27. Eisenhaber F, Argos P (1993) Improved strategy in analytic surface calculation for molecular systems: handling of singularities and computational efficiency. J Comput Chem 14(11):1272–1280

    Article  CAS  Google Scholar 

  28. Pakula AA, Sauer RT (1990) Reverse hydrophobic effects relieved by amino-acid substitutions at a protein surface. Nature 344(6264):363–364

    Article  CAS  PubMed  Google Scholar 

  29. Gromiha MM, Oobatake M, Kono H, Uedaira H, Sarai A (1999) Role of structural and sequence information in the prediction of protein stability changes: comparison between buried and partially buried mutations. Protein Eng 12(7):549–555

    Article  CAS  PubMed  Google Scholar 

  30. Gromiha MM, Oobatake M, Kono H, Uedaira H, Sarai A (1999) Relationship between amino acid properties and protein stability: buried mutations. J Protein Chem 18(5):565–578

    Article  CAS  PubMed  Google Scholar 

  31. Kursula I, Partanen S, Lambeir AM, Wierenga RK (2002) The importance of the conserved Arg191-Asp227 salt bridge of triosephosphate isomerase for folding, stability, and catalysis. FEBS Lett 518(1-3):39–42

    Article  CAS  PubMed  Google Scholar 

  32. Topham CM, Srinivasan N, Blundell TL (1997) Prediction of the stability of protein mutants based on structural environment-dependent amino acid substitution and propensity tables. Protein Eng 10(1):7–21

    Article  CAS  PubMed  Google Scholar 

  33. Gilis D, Rooman M (1997) Predicting protein stability changes upon mutation using database-derived potentials: solvent accessibility determines the importance of local versus non-local interactions along the sequence. J Mol Biol 272(2):276–290

    Article  CAS  PubMed  Google Scholar 

  34. Hoppe C, Schomburg D (2005) Prediction of protein thermostability with a direction- and distance-dependent knowledge-based potential. Protein Sci 14(10):2682–2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Parthiban V, Gromiha MM, Schomburg D (2006) CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Res 34(Web Server issue):W239–W242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Masso M, Vaisman II (2010) AUTO-MUTE: web-based tools for predicting stability changes in proteins due to single amino acid replacements. Protein Eng 23(8):683–687

    Article  CAS  Google Scholar 

  37. Dehouck Y, Kwasigroch JM, Gilis D, Rooman M (2011) PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality. BMC Bioinformatics 12:151

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li Y, Zhang J, Tai D, Middaugh CR, Zhang Y, Fang J (2012) PROTS: a fragment based protein thermo-stability potential. Proteins 80(1):81–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pucci F, Dhanani M, Dehouck Y, Rooman M (2014) Protein thermostability prediction within homologous families using temperature-dependent statistical potentials. PLoS One 9(3):e91659

    Article  PubMed  PubMed Central  Google Scholar 

  40. Seeliger D, de Groot BL (2010) Protein thermostability calculations using alchemical free energy simulations. Biophys J 98(10):2309–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Worth CL, Preissner R, Blundell TL (2011) SDM--a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res 39(Web Server issue):W215–W222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wickstrom L, Gallicchio E, Levy RM (2012) The linear interaction energy method for the prediction of protein stability changes upon mutation. Proteins 80(1):111–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Berliner N, Teyra J, Colak R, Garcia Lopez S, Kim PM (2014) Combining structural modeling with ensemble machine learning to accurately predict protein fold stability and binding affinity effects upon mutation. PLoS One 9(9):e107353

    Article  PubMed  PubMed Central  Google Scholar 

  44. Frappier V, Najmanovich RJ (2014) A coarse-grained elastic network atom contact model and its use in the simulation of protein dynamics and the prediction of the effect of mutations. PLoS Comput Biol 10(4):e1003569

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lonquety M, Chomilier J, Papandreou N, Lacroix Z (2010) Prediction of stability upon point mutation in the context of the folding nucleus. Omics 14(2):151–156

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Z, Wang L, Gao Y, Zhang J, Zhenirovskyy M, Alexov E (2012) Predicting folding free energy changes upon single point mutations. Bioinformatics 28(5):664–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Giollo M, Martin AJ, Walsh I, Ferrari C, Tosatto SC (2014) NeEMO: a method using residue interaction networks to improve prediction of protein stability upon mutation. BMC Genomics 15(Suppl 4):S7

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pires DE, Ascher DB, Blundell TL (2014) mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 30(3):335–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pires DE, Ascher DB, Blundell TL (2014) DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res 42(Web Server issue):W314–W319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Frappier V, Chartier M, Najmanovich RJ (2015) ENCoM server: exploring protein conformational space and the effect of mutations on protein function and stability. Nucleic Acids Res. doi:10.1093/nar/gkv343

    PubMed  PubMed Central  Google Scholar 

  51. Folkman L, Stantic B, Sattar A (2014) Feature-based multiple models improve classification of mutation-induced stability changes. BMC Genomics 15(Suppl 4):S6

    Article  PubMed  PubMed Central  Google Scholar 

  52. Liu J, Kang X (2012) Grading amino acid properties increased accuracies of single point mutation on protein stability prediction. BMCBioinformatics 13:44

    Google Scholar 

  53. Folkman L, Stantic B, Sattar A (2013) Sequence-only evolutionary and predicted structural features for the prediction of stability changes in protein mutants. BMC Bioinformatics 14(Suppl 2):S6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Teng S, Srivastava AK, Wang L (2010) Sequence feature-based prediction of protein stability changes upon amino acid substitutions. BMC Genomics 11(Suppl 2):S5

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fariselli P, Martelli PL, Savojardo C, Casadio R (2015) INPS: predicting the impact of non-synonymous variations on protein stability from sequence. Bioinformatics. doi:10.1093/bioinformatics/btv291

    Google Scholar 

  56. Wainreb G, Wolf L, Ashkenazy H, Dehouck Y, Ben-Tal N (2011) Protein stability: a single recorded mutation aids in predicting the effects of other mutations in the same amino acid site. Bioinformatics 27(23):3286–3292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Masso M, Vaisman II (2008) Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis. Bioinformatics 24(18):2002–2009

    Article  CAS  PubMed  Google Scholar 

  58. Dehouck Y, Grosfils A, Folch B, Gilis D, Bogaerts P, Rooman M (2009) Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0. Bioinformatics 25(19):2537–2543

    Article  CAS  PubMed  Google Scholar 

  59. Chen CW, Lin J, Chu YW (2013) iStable: off-the-shelf predictor integration for predicting protein stability changes. BMC Bioinformatics 14(Suppl 2):S5

    Article  Google Scholar 

  60. Huang L-T, Lai L-F, Wu C-C, Michael Gromiha M (2010) Development of knowledge-based system for predicting the stability of proteins upon point mutations. Neurocomputing 73(13–15):2293–2299

    Article  Google Scholar 

  61. Huang LT, Lai LF, Gromiha MM (2010) Human-readable rule generator for integrating amino acid sequence information and stability of mutant proteins. IEEE/ACM Trans Comput Biol Bioinform 7(4):681–687

    Article  CAS  PubMed  Google Scholar 

  62. Huang LT, Gromiha MM (2009) Reliable prediction of protein thermostability change upon double mutation from amino acid sequence. Bioinformatics 25(17):2181–2187

    Article  CAS  PubMed  Google Scholar 

  63. Tian J, Wu N, Chu X, Fan Y (2010) Predicting changes in protein thermostability brought about by single- or multi-site mutations. BMC Bioinformatics 11:370

    Article  PubMed  PubMed Central  Google Scholar 

  64. Li Y, Fang J (2012) PROTS-RF: a robust model for predicting mutation-induced protein stability changes. PLoS One 7(10):e47247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Laimer J, Hofer H, Fritz M, Wegenkittl S, Lackner P (2015) MAESTRO—multi agent stability prediction upon point mutations. BMC Bioinformatics 16(1):116

    Article  PubMed  PubMed Central  Google Scholar 

  66. Egorova K, Antranikian G (2005) Industrial relevance of thermophilic Archaea. Curr Opin Microbiol 8(6):649–655

    Article  CAS  PubMed  Google Scholar 

  67. Jordan DM, Ramensky VE, Sunyaev SR (2010) Human allelic variation: perspective from protein function, structure, and evolution. Curr Opin Struct Biol 20(3):342–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang Z, Moult J (2001) SNPs, protein structure, and disease. Hum Mutat 17(4):263–270

    Article  PubMed  Google Scholar 

  69. Yue P, Li Z, Moult J (2005) Loss of protein structure stability as a major causative factor in monogenic disease. J Mol Biol 353(2):459–473

    Article  CAS  PubMed  Google Scholar 

  70. Allali-Hassani A, Wasney GA, Chau I, Hong BS, Senisterra G, Loppnau P, Shi Z, Moult J, Edwards AM, Arrowsmith CH, Park HW, Schapira M, Vedadi M (2009) A survey of proteins encoded by non-synonymous single nucleotide polymorphisms reveals a significant fraction with altered stability and activity. Biochem J 424(1):15–26

    Article  CAS  PubMed  Google Scholar 

  71. Petukh M, Kucukkal TG, Alexov E (2015) On human disease-causing amino acid variants: statistical study of sequence and structural patterns. Hum Mutat 36(5):524–534

    Article  CAS  PubMed  Google Scholar 

  72. George DC, Chakraborty C, Haneef SA, Nagasundaram N, Chen L, Zhu H (2014) Evolution- and structure-based computational strategy reveals the impact of deleterious missense mutations on MODY 2 (maturity-onset diabetes of the young, type 2). Theranostics 4(4):366–385

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gossage L, Pires DE, Olivera-Nappa A, Asenjo J, Bycroft M, Blundell TL, Eisen T (2014) An integrated computational approach can classify VHL missense mutations according to risk of clear cell renal carcinoma. Hum Mol Genet 23(22):5976–5988

    Article  PubMed  PubMed Central  Google Scholar 

  74. Doss CG, Chakraborty C (2014) Integrating in silico prediction methods, molecular docking, and molecular dynamics simulation to predict the impact of ALK missense mutations in structural perspective. BioMed Res Int 2014:895831

    PubMed  Google Scholar 

  75. Serohijos AW, Shakhnovich EI (2014) Contribution of selection for protein folding stability in shaping the patterns of polymorphisms in coding regions. Mol Biol Evol 31(1):165–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Potapov V, Cohen M, Schreiber G (2009) Assessing computational methods for predicting protein stability upon mutation: good on average but not in the details. Protein Eng Des Sel 22(9):553–560

    Article  CAS  PubMed  Google Scholar 

  77. Khan S, Vihinen M (2010) Performance of protein stability predictors. Hum Mutat 31(6):675–684

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was dedicated to the memory of Prof. Akinori Sarai, the principal investigator for the development and maintenance of ProTherm database. We thank Dr. Oliviero Carugo for the invitation to contribute the article. We also acknowledge Prof. M.N. Ponnuswamy, Dr. A. Bava, Dr. H. Uedaira, Dr. H. Kono, Mr. K. Kitajima, Dr. V. Parthiban, and Dr. K. Saraboji for their stimulating discussions and help at various stages of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Michael Gromiha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gromiha, M.M., Anoosha, P., Huang, LT. (2016). Applications of Protein Thermodynamic Database for Understanding Protein Mutant Stability and Designing Stable Mutants. In: Carugo, O., Eisenhaber, F. (eds) Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol 1415. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3572-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3572-7_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3570-3

  • Online ISBN: 978-1-4939-3572-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics