Skip to main content

Combined and Iterative Use of Computational Design and Directed Evolution for Protein–Ligand Binding Design

  • Protocol
  • First Online:
Computational Design of Ligand Binding Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1414))

Abstract

The advantages of computational design and directed evolution are complementary, and only through combined and iterative use of both approaches, a daunting task such as protein–ligand interaction design, can be achieved efficiently. Here, we describe a systematic strategy to combine structure-guided computational design, iterative site saturation mutagenesis, and yeast two-hybrid system (Y2H)-based phenotypic screening to engineer novel and orthogonal interactions between synthetic ligands and human estrogen receptor α (hERα) for the development of novel gene switches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weatherman RV, Fletterick RJ, Scanlan TS (1999) Nuclear-receptor ligands and ligand-binding domains. Annu Rev Biochem 68:559–581

    Article  CAS  PubMed  Google Scholar 

  2. Anand P, Nagarajan D, Mukherjee S, Chandra N (2014) PLIC: protein-ligand interaction clusters. Database (Oxford) 2014:bau029

    Google Scholar 

  3. Damborsky J, Brezovsky J (2014) Computational tools for designing and engineering enzymes. Curr Opin Chem Biol 19:8–16

    Article  CAS  PubMed  Google Scholar 

  4. Feldmeier K, Höcker B (2013) Computational protein design of ligand binding and catalysis. Curr Opin Chem Biol 17:929–933

    Article  CAS  PubMed  Google Scholar 

  5. Brustad EM, Lelyveld VS, Snow CD, Crook N, Jung ST, Martinez FM, Scholl TJ, Jasanoff A, Arnold FH (2012) Structure-guided directed evolution of highly selective p450-based magnetic resonance imaging sensors for dopamine and serotonin. J Mol Biol 422:245–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shapiro MG, Westmeyer GG, Romero PA, Szablowski JO, Kuster B, Shah A, Otey CR, Langer R, Arnold FH, Jasanoff A (2010) Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine. Nat Biotechnol 28:264–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de Las HA, Carreno CA, Martinez-Garcia E, de Lorenzo V (2010) Engineering input/output nodes in prokaryotic regulatory circuits. FEMS Microbiol Rev 34:842–865

    Article  Google Scholar 

  8. Collins CH, Arnold FH, Leadbetter JR (2005) Directed evolution of Vibrio fischeri LuxR for increased sensitivity to a broad spectrum of acyl-homoserine lactones. Mol Microbiol 55:712–723

    Article  CAS  PubMed  Google Scholar 

  9. Scholz O, Kostner M, Reich M, Gastiger S, Hillen W (2003) Teaching TetR to recognize a new inducer. J Mol Biol 329:217–227

    Article  CAS  PubMed  Google Scholar 

  10. Tang SY, Fazelinia H, Cirino PC (2008) AraC regulatory protein mutants with altered effector specificity. J Am Chem Soc 130:5267–5271

    Article  CAS  PubMed  Google Scholar 

  11. Vee Aune TE, Bakke I, Drablos F, Lale R, Brautaset T, Valla S (2010) Directed evolution of the transcription factor XylS for development of improved expression systems. Microb Biotechnol 3:38–47

    Article  PubMed  PubMed Central  Google Scholar 

  12. Amiss TJ, Sherman DB, Nycz CM, Andaluz SA, Pitner JB (2007) Engineering and rapid selection of a low-affinity glucose/galactose-binding protein for a glucose biosensor. Protein Sci 16:2350–2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. East AK, Mauchline TH, Poole PS (2008) Biosensors for ligand detection. Adv Appl Microbiol 64:137–166

    Article  CAS  PubMed  Google Scholar 

  14. Reetz MT, Bocola M, Carballeira JD, Zha D, Vogel A (2005) Expanding the range of substrate acceptance of enzymes: combinatorial active-site saturation test. Angew Chem Int Ed Engl 44:4192–4196

    Article  CAS  PubMed  Google Scholar 

  15. Reetz MT, Carballeira JD, Vogel A (2006) Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew Chem Int Ed Engl 45:7745–7751

    Article  CAS  PubMed  Google Scholar 

  16. Chockalingam K, Chen Z, Katzenellenbogen JA, Zhao H (2005) Directed evolution of specific receptor-ligand pairs for use in the creation of gene switches. Proc Natl Acad Sci U S A 102:5691–5696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tinberg CE, Khare SD, Dou J, Doyle L, Nelson JW, Schena A, Jankowski W, Kalodimos CG, Johnsson K, Stoddard BL, Baker D (2013) Computational design of ligand-binding proteins with high affinity and selectivity. Nature 501:212–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khare SD, Kipnis Y, Greisen P Jr, Takeuchi R, Ashani Y, Goldsmith M, Song Y, Gallaher JL, Silman I, Leader H, Sussman JL, Stoddard BL, Tawfik DS, Baker D (2012) Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis. Nat Chem Biol 8:294–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Giger L, Caner S, Obexer R, Kast P, Baker D, Ban N, Hilvert D (2013) Evolution of a designed retro-aldolase leads to complete active site remodeling. Nat Chem Biol 9:494–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McLachlan MJ, Chockalingam K, Lai KC, Zhao H (2009) Directed evolution of orthogonal ligand specificity in a single scaffold. Angew Chem Int Ed Engl 48:7783–7786

    Article  CAS  PubMed  Google Scholar 

  21. Ding XF, Anderson CM, Ma H, Hong H, Uht RM, Kushner PJ, Stallcup MR (1998) Nuclear receptor-binding sites of coactivators glucocorticoid receptor interacting protein 1 (GRIP1) and steroid receptor coactivator 1 (SRC-1): multiple motifs with different binding specificities. Mol Endocrinol 12:302–313

    Article  CAS  PubMed  Google Scholar 

  22. Katzenellenbogen JA, Johnson HJ, Carlson KE, Myers HN (1974) Photoreactivity of some light-sensitive estrogen derivatives. Use of an exchange assay to determine their photointeraction with the rat uterine estrogen binding protein. Biochemistry 13:2986–2994

    Article  CAS  PubMed  Google Scholar 

  23. Chen Z, Katzenellenbogen BS, Katzenellenbogen JA, Zhao H (2004) Directed evolution of human estrogen receptor variants with significantly enhanced androgen specificity and affinity. J Biol Chem 279:33855–33864

    Article  CAS  PubMed  Google Scholar 

  24. Halgren TA (1999) MMFF VI. MMFF94s option for energy minimization studies. J Comput Chem 20:720–729

    Article  CAS  Google Scholar 

  25. Hart TN, Read RJ (1992) A multiple-start Monte Carlo docking method. Proteins 13:206–222

    Article  CAS  PubMed  Google Scholar 

  26. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wang, M., Zhao, H. (2016). Combined and Iterative Use of Computational Design and Directed Evolution for Protein–Ligand Binding Design. In: Stoddard, B. (eds) Computational Design of Ligand Binding Proteins. Methods in Molecular Biology, vol 1414. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3569-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3569-7_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3567-3

  • Online ISBN: 978-1-4939-3569-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics