Skip to main content

PocketOptimizer and the Design of Ligand Binding Sites

  • Protocol
  • First Online:
Computational Design of Ligand Binding Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1414))

Abstract

PocketOptimizer is a computational method to design protein binding pockets that has been recently developed. Starting from a protein structure an existing small molecule binding pocket is optimized for the recognition of a new ligand. The modular program predicts mutations that will improve the affinity of a target small molecule to the protein of interest using a receptor–ligand scoring function to estimate the binding free energy. PocketOptimizer has been tested in a comprehensive benchmark and predicted mutations have also been used in experimental tests. In this chapter, we will provide general recommendations for usage as well as an in-depth description of all individual PocketOptimizer modules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kohlbacher O (2012) CADDSuite – a workflow-enabled suite of open-source tools for drug discovery. J Cheminform 4:O2. doi:10.1186/1758-2946-4-S1-O2

    PubMed Central  Google Scholar 

  2. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–61. doi:10.1002/jcc.21334

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Malisi C, Schumann M, Toussaint NC et al (2012) Binding pocket optimization by computational protein design. PLoS One 7, e52505. doi:10.1371/journal.pone.0052505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Smith CA, Kortemme T (2008) Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction. J Mol Biol 380:742–56. doi:10.1016/j.jmb.2008.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Georgiev I, Keedy D, Richardson JS et al (2008) Algorithm for backrub motions in protein design. Bioinformatics 24:i196–204. doi:10.1093/bioinformatics/btn169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Richter F, Leaver-Fay A, Khare SD et al (2011) De novo enzyme design using Rosetta3. PLoS One 6, e19230. doi:10.1371/journal.pone.0019230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Leite TB, Gomes D, Miteva MA et al (2007) Frog: a FRee Online druG 3D conformation generator. Nucleic Acids Res 35:W568–72. doi:10.1093/nar/gkm289

    Article  PubMed  PubMed Central  Google Scholar 

  8. O’Boyle NM, Vandermeersch T, Flynn CJ et al (2011) Confab - Systematic generation of diverse low-energy conformers. J Cheminform 3:8. doi:10.1186/1758-2946-3-8

    Article  PubMed  PubMed Central  Google Scholar 

  9. wwPDB (2008) Chemical Component Dictionary. http://www.wwpdb.org/ccd.html. Accessed 17 Feb 2016

  10. Höcker Lab (2015) Algorithms and software. https://webdav.tue.mpg.de/u/birtehoecker//. Accessed 17 Feb 2016

  11. AMBER (2015) The amber molecular dynamics package. http://ambermd.org. Accessed 17 Feb 2016

  12. Jay Ponder Lab (2015) TINKER molecular modeling package. http://dasher.wustl.edu/tinker/. Accessed 17 Feb 2016

  13. Sontag D, Choe DK, Li Y (2012) Efficiently searching for frustrated cycles in MAP inference. arXiv preprint arXiv:1210.4902

    Google Scholar 

  14. DOCKER (2015) Docker software. http://www.docker.com. Accessed 17 Feb 2016

Download references

Acknowledgments

Financial support from the German Research Foundation (DFG grant HO 4022/2-3) is acknowledged. M.N. was supported by the Erasmus+ mobility program. The authors like to thank Steffen Schmidt for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birte Höcker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Stiel, A.C., Nellen, M., Höcker, B. (2016). PocketOptimizer and the Design of Ligand Binding Sites. In: Stoddard, B. (eds) Computational Design of Ligand Binding Proteins. Methods in Molecular Biology, vol 1414. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3569-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3569-7_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3567-3

  • Online ISBN: 978-1-4939-3569-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics