Skip to main content

Computational Design of Multinuclear Metalloproteins Using Unnatural Amino Acids

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1414))

Abstract

Multinuclear metal ion clusters, coordinated by proteins, catalyze various critical biological redox reactions, including water oxidation in photosynthesis, and nitrogen fixation. Designed metalloproteins featuring synthetic metal clusters would aid in the design of bio-inspired catalysts for various applications in synthetic biology. The design of metal ion-binding sites in a protein chain requires geometrically constrained and accurate placement of several (between three and six) polar and/or charged amino acid side chains for every metal ion, making the design problem very challenging to address. Here, we describe a general computational method to redesign oligomeric interfaces of symmetric proteins for the purpose of creating novel multinuclear metalloproteins with tunable geometries, electrochemical environments, and metal cofactor stability via first and second-shell interactions.

The method requires a target symmetric organometallic cofactor whose coordinating ligands resemble the side chains of a natural or unnatural amino acid and a library of oligomeric protein structures featuring the same symmetry as the target cofactor. Geometric interface matches between target cofactor and scaffold are determined using a program that we call symmetric protein recursive ion-cofactor sampler (SyPRIS). First, the amino acid-bound organometallic cofactor model is built and symmetrically aligned to the axes of symmetry of each scaffold. Depending on the symmetry, rigid body and inverse rotameric degrees of freedom of the cofactor model are then simultaneously sampled to locate scaffold backbone constellations that are geometrically poised to incorporate the cofactor. Optionally, backbone remodeling of loops can be performed if no perfect matches are identified. Finally, the identities of spatially proximal neighbor residues of the cofactor are optimized using Rosetta Design. Selected designs can then be produced in the laboratory using genetically incorporated unnatural amino acid technology and tested experimentally for structure and catalytic activity.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ghosh D, Pecoraro VL (2004) Understanding metalloprotein folding using a de novo design strategy. Inorg Chem 43:7902–7915. doi:10.1021/ic048939z

    Article  CAS  PubMed  Google Scholar 

  2. Hellinga HW (1996) Metalloprotein design. Curr Opin Biotechnol 7:437–441. doi:10.1016/S0958-1669(96)80121-2

    Article  CAS  PubMed  Google Scholar 

  3. Peacock AFA (2013) Incorporating metals into de novo proteins. Curr Opin Chem Biol 17:934–939. doi:10.1016/j.cbpa.2013.10.015

    Article  CAS  PubMed  Google Scholar 

  4. Zastrow ML, Pecoraro VL (2013) Designing functional metalloproteins: from structural to catalytic metal sites. Coord Chem Rev 257:2565–2588. doi:10.1016/j.ccr.2013.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lu Y, Yeung N, Sieracki N, Marshall NM (2009) Design of functional metalloproteins. Nature 460:855–862. doi:10.1038/nature08304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grzyb J, Xu F, Weiner L et al (2010) De novo design of a non-natural fold for an iron-sulfur protein: Alpha-helical coiled-coil with a four-iron four-sulfur cluster binding site in its central core. Biochim Biophys Acta Bioenerg 1797:406–413. doi:10.1016/j.bbabio.2009.12.012

    Article  CAS  Google Scholar 

  7. DeGrado WF, Summa CM, Pavone V et al (1999) De novo design and structural characterization of proteins and metalloproteins. Annu Rev Biochem 68:779–819. doi:10.1146/annurev.biochem.68.1.779

    Article  CAS  PubMed  Google Scholar 

  8. Degrado WF, Summa CM, Pavone V et al (1999) De novo design and structural characterization of proteins. Biochemistry 68:779–819

    Article  CAS  Google Scholar 

  9. Mills JH, Khare SD, Bolduc JM et al (2013) Computational design of an unnatural amino acid dependent metalloprotein with atomic level accuracy. J Am Chem Soc 135:13393–13399. doi:10.1021/ja403503m

    Article  CAS  PubMed  Google Scholar 

  10. Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444. doi:10.1146/annurev.biochem.052308.105824

    Article  CAS  PubMed  Google Scholar 

  11. Imperiali B, Fisher SL (1991) (S)-u-amino-2,2′-bipyridine-6-propanoic acid: a versatile amino acid for de novo metalloprotein design. J Am Chem Soc 113:8527–8528. doi:10.1021/ja00022a053

    Article  CAS  Google Scholar 

  12. Richter F, Leaver-Fay A, Khare SD et al (2011) De novo enzyme design using Rosetta3. PLoS One 6:1–12. doi:10.1371/journal.pone.0019230

    Google Scholar 

  13. Smith PF, Kaplan C, Sheats JE et al (2014) What determines catalyst functionality in molecular water oxidation? Dependence on ligands and metal nuclearity in cobalt clusters. Inorg Chem 53:2113–2121. doi:10.1021/ic402720p

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Clatworthy EB, Masters AF, Maschmeyer T (2015) Molecular cobalt clusters as precursors of distinct active species in electrochemical, photochemical, and photoelectrochemical water oxidation reactions in phosphate electrolytes. Chemistry 21(46):16578–16584. doi:10.1002/chem.201502428

    Article  CAS  PubMed  Google Scholar 

  15. Dimitrou K, Brown AD, Christou G et al (2001) Mixed-valence, tetranuclear cobalt(iii, iv) complexes: preparation and properties of [Co4O4(O2CR)2(bpy)4]3+ salts. Chem Commun 4:1284–1285. doi:10.1039/b102008k

    Article  Google Scholar 

  16. Evangelisti F, Guettinger R, More R et al (2013) Closer to photosystem II: A Co4O4 cubane catalyst with flexible ligand architecture. J Am Chem Soc 135(50):18734–18737. doi:10.1021/ja4098302

    Article  CAS  PubMed  Google Scholar 

  17. McCool NS, Robinson DM, Sheats JE, Dismukes GC (2011) A Co4O4 cubane water oxidation catalyst inspired by photosynthesis. J Am Chem Soc 133:11446–11449. doi:10.1021/ja203877y

    Article  CAS  PubMed  Google Scholar 

  18. Berardi S, La Ganga G, Natali M et al (2012) Photocatalytic water oxidation: tuning light-induced electron transfer by molecular Co4O4 cores. J Am Chem Soc 134:11104–11107. doi:10.1021/ja303951z

    Article  CAS  PubMed  Google Scholar 

  19. Chakrabarty R, Bora SJ, Das BK (2007) Synthesis, structure, spectral and electrochemical properties, and catalytic use of cobalt (III)−oxo cubane clusters. Polyhedron 46:9450–9462

    CAS  Google Scholar 

  20. Najafpour MM, Rahimi F, Aro E-M et al (2012) Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review. J R Soc Interface 9:2383–2395. doi:10.1098/rsif.2012.0412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tantillo DJ, Chen J, Houk KN (1998) Theozymes and compuzymes: theoretical models for biological catalysis. Curr Opin Chem Biol 2:743–750. doi:10.1016/S1367-5931(98)80112-9

    Article  CAS  PubMed  Google Scholar 

  22. Siegel JB, Zanghellini A, Lovick HM et al (2010) Computational design of an enzyme catalyst for a stereoselective bimolecular diels-alder reaction. Science 105:1–6

    Google Scholar 

  23. Röthlisberger D, Khersonsky O, Wollacott AM et al (2008) Kemp elimination catalysts by computational enzyme design. Nature 453:190–195. doi:10.1038/nature06879

    Article  PubMed  Google Scholar 

  24. Jiang L, Althoff EA, Clemente FR et al (2008) De novo computational design of retro-aldol enzymes. Science 319:1387–1391. doi:10.1126/science.1152692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bradley P, Misura KMS, Baker D (2005) Toward high-resolution de novo structure prediction for small proteins. Science 309:1868–1871. doi:10.1126/science.1113801

    Article  CAS  PubMed  Google Scholar 

  26. Mandell DJ, Kortemme T (2009) Backbone flexibility in computational protein design. Curr Opin Biotechnol 20:420–428. doi:10.1016/j.copbio.2009.07.006

    Article  CAS  PubMed  Google Scholar 

  27. Mandell DJ, Coutsias EA, Kortemme T (2009) Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat Methods 6:551–552. doi:10.1038/nmeth0809-551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagar D. Khare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hansen, W.A., Mills, J.H., Khare, S.D. (2016). Computational Design of Multinuclear Metalloproteins Using Unnatural Amino Acids. In: Stoddard, B. (eds) Computational Design of Ligand Binding Proteins. Methods in Molecular Biology, vol 1414. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3569-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3569-7_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3567-3

  • Online ISBN: 978-1-4939-3569-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics