Skip to main content

Measuring NLR Oligomerization I: Size Exclusion Chromatography, Co-immunoprecipitation, and Cross-Linking

  • Protocol
  • First Online:
NLR Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1417))

Abstract

Oligomerization of nod-like receptors (NLRs) can be detected by several biochemical techniques dependent on the stringency of protein–protein interactions. Some of these biochemical methods can be combined with functional assays, such as caspase-1 activity assay. Size exclusion chromatography (SEC) allows separation of native protein lysates into different sized complexes by fast protein liquid chromatography (FPLC) for follow-up analysis. Using co-immunoprecipitation (co-IP), combined with SEC or on its own, enables subsequent antibody-based purification of NLR complexes and associated proteins, which can then be analyzed by immunoblot and/or subjected to functional caspase-1 activity assay. Chemical cross-linking covalently joins two or more molecules, thus capturing the oligomeric state with high sensitivity and stability. Apoptosis-associated speck-like protein containing a caspase activation domain (ASC) oligomerization has been successfully used as readout for NLR or AIM2-like receptor (ALR) inflammasome activation in response to various pathogen- or damage-associated molecular patterns (PAMPs or DAMPs) in human and mouse macrophages and THP-1 cells. Here, we provide a detailed description of the methods used for NLRP7 oligomerization in response to infection with Staphylococcus aureus (S. aureus) in primary human macrophages, co-immunoprecipitation and immunoblot analysis of NLRP7 and NLRP3 inflammasome complexes, as well as caspase-1 activity assays. Also, ASC oligomerization is shown in response to dsDNA, LPS/ATP, and LPS/nigericin in mouse bone marrow-derived macrophages (BMDMs) and/or THP-1 cells or human primary macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbé F, Douglas T, Saleh M (2014) Advances in Nod-like receptors (NLR) biology. Cytokine Growth Factor Rev 25:681–697

    Article  PubMed  Google Scholar 

  2. Khare S, Luc N, Dorfleutner A, Stehlik C (2010) Inflammasomes and their activation. Crit Rev Immunol 30:463–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Phizicky EM, Fields S (1995) Protein–protein interactions: methods for detection and analysis. Microbiol Rev 59:94–123

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Miernyk JA, Thelen JJ (2008) Biochemical approaches for discovering protein–protein interactions. Plant J 53:597–609

    Article  CAS  PubMed  Google Scholar 

  5. Dwane S, Kiely PA (2011) Tools used to study how protein complexes are assembled in signaling cascades. Bioeng Bugs 2:247–259

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fekete S, Beck A, Veuthey J-L, Guillarme D (2014) Theory and practice of size exclusion chromatography for the analysis of protein aggregates. J Pharm Biomed Anal 101C:161–173

    Article  Google Scholar 

  7. Khare S, Dorfleutner A, Bryan NB, Yun C et al (2012) An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 36:464–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kaboord B, Perr M (2008) Isolation of proteins and protein complexes by immunoprecipitation. Methods Mol Biol 424:349–364

    Article  CAS  PubMed  Google Scholar 

  9. Markham K, Bai Y, Schmitt-Ulms G (2007) Co-immunoprecipitations revisited: an update on experimental concepts and their implementation for sensitive interactome investigations of endogenous proteins. Anal Bioanal Chem 389:461–473

    Article  CAS  PubMed  Google Scholar 

  10. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426

    Article  CAS  PubMed  Google Scholar 

  11. Elliott JM, Rouge L, Wiesmann C, Scheer JM (2009) Crystal structure of procaspase-1 zymogen domain reveals insight into inflammatory caspase autoactivation. J Biol Chem 284:6546–6553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yamin TT, Ayala JM, Miller DK (1996) Activation of the native 45-kDa precursor form of interleukin-1-converting enzyme. J Biol Chem 271:13273–13282

    Article  CAS  PubMed  Google Scholar 

  13. Kuida K, Lippke JA, Ku G, Harding MW et al (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267:2000–2003

    Article  CAS  PubMed  Google Scholar 

  14. Li P, Allen H, Banerjee S, Franklin S et al (1995) Mice deficient in IL-1b-converting enzyme are defective in production of mature IL-1b and resistant to endotoxic shock. Cell 80:401–411

    Article  CAS  PubMed  Google Scholar 

  15. Thornberry NA, Bull HG, Calaycay JR, Chapman KT et al (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356:768–774

    Article  CAS  PubMed  Google Scholar 

  16. Thornberry NA, Rano TA, Peterson EP, Rasper DM et al (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272:17907–17911

    Article  CAS  PubMed  Google Scholar 

  17. Mattson G, Conklin E, Desai S, Nielander G et al (1993) A practical approach to crosslinking. Mol Biol Rep 17:167–183

    Article  CAS  PubMed  Google Scholar 

  18. Fernandes-Alnemri T, Wu J, Yu JW, Datta P et al (2007) The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 14:1590–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fernandes-Alnemri T, Alnemri ES (2008) Assembly, purification, and assay of the activity of the ASC pyroptosome. Methods Enzymol 442:251–270

    Article  CAS  PubMed  Google Scholar 

  20. Khare S, Ratsimandresy RA, de Almeida L, Cuda CM et al (2014) The PYRIN domain-only protein POP3 inhibits ALR inflammasomes and regulates responses to infection with DNA viruses. Nat Immunol 15:343–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Masters SC (2004) Co-immunoprecipitation from transfected cells. Methods Mol Biol 261:337–350

    CAS  PubMed  Google Scholar 

  22. Ghayur T, Banerjee S, Hugunin M, Butler D et al (1997) Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature 386:619–623

    Article  CAS  PubMed  Google Scholar 

  23. Gurcel L, Abrami L, Girardin S, Tschopp J, van der Goot FG (2006) Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126:1135–1145

    Article  CAS  PubMed  Google Scholar 

  24. Keller M, Ruegg A, Werner S, Beer HD (2008) Active caspase-1 is a regulator of unconventional protein secretion. Cell 132:818–831

    Article  CAS  PubMed  Google Scholar 

  25. Shao W, Yeretssian G, Doiron K, Hussain SN, Saleh M (2007) The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J Biol Chem 282:36321–36329

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (GM071723, AI099009, AI120618 and AR064349 to C.S., AI120625 to C.S. and A.D. and AR066739 to A.D.) and the American Heart Association (12GRNT12080035 to C.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Stehlik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Khare, S., Radian, A.D., Dorfleutner, A., Stehlik, C. (2016). Measuring NLR Oligomerization I: Size Exclusion Chromatography, Co-immunoprecipitation, and Cross-Linking. In: Di Virgilio, F., Pelegrín, P. (eds) NLR Proteins. Methods in Molecular Biology, vol 1417. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3566-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3566-6_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3564-2

  • Online ISBN: 978-1-4939-3566-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics