Skip to main content

Measuring IL-1β Processing by Bioluminescence Sensors II: The iGLuc System

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1417))

Abstract

Inflammasomes are multimeric protein complexes that proteolytically activate caspase-1, which subsequently matures cytokines of the IL-1 family and initiates the induction of pyroptotic cell death. Although this process is central both to pathogen defense and sterile inflammatory processes, there is currently no standard readout available for inflammasome activation which would be suitable for high-throughput applications. We have recently developed a new method for measuring inflammasome activation via the use of a novel proteolytic reporter iGLuc, an IL-1β Gaussia luciferase (iGLuc) fusion protein. Here, we provide detailed protocols for the use of iGLuc in transiently transfected or stably transduced cell lines. Using these protocols, IL-1β maturation as the result of inflammasome activation or other processes can be indirectly measured via the gain of Gaussia luciferase activity of cleaved iGLuc, allowing for rapid inflammasome reconstitution assays and high-throughput screening of inflammasome activity.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bauernfeind F, Ablasser A, Bartok E, Kim S, Schmid-Burgk J, Cavlar T, Hornung V (2010) Inflammasomes: current understanding and open questions. Cell Mol Life Sci 68:765–783

    Article  PubMed  Google Scholar 

  2. Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13:397–411

    Article  CAS  PubMed  Google Scholar 

  3. Bauernfeind F, Hornung V (2013) Of inflammasomes and pathogens—sensing of microbes by the inflammasome. EMBO Mol Med 5:814–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Groß O, Yazdi AS, Thomas CJ, Masin M, Heinz LX, Guarda G, Quadroni M, Drexler SK, Tschopp J (2012) Inflammasome activators induce interleukin-1α secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 36:388–400

    Article  PubMed  Google Scholar 

  5. Gringhuis SI, Kaptein TM, Wevers BA, Theelen B, van der Vlist M, Boekhout T, Geijtenbeek TB (2012) Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1beta via a noncanonical caspase-8 inflammasome. Nat Immunol 13(3):246–254. doi:10.1038/ni.2222

    Article  CAS  PubMed  Google Scholar 

  6. Bossaller L, Chiang PI, Schmidt-Lauber C, Ganesan S, Kaiser WJ, Rathinam VA, Mocarski ES, Subramanian D, Green DR, Silverman N, Fitzgerald KA, Marshak-Rothstein A, Latz E (2012) Cutting edge: FAS (CD95) mediates noncanonical IL-1beta and IL-18 maturation via caspase-8 in an RIP3-independent manner. J Immunol 189(12):5508–5512. doi:10.4049/jimmunol.1202121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Netea MG, van de Veerdonk FL, van der Meer JW, Dinarello CA, Joosten LA (2014) Inflammasome-independent regulation of IL-1-family cytokines. Annu Rev Immunol. doi:10.1146/annurev-immunol-032414-112306

    PubMed  Google Scholar 

  8. Jin T, Perry A, Jiang J, Smith P, Curry JA, Unterholzner L, Jiang Z, Horvath G, Rathinam VA, Johnstone RW, Hornung V, Latz E, Bowie AG, Fitzgerald KA, Xiao TS (2012) Structures of the HIN domain:DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity 36(4):561–571. doi:10.1016/j.immuni.2012.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. von Moltke J, Ayres JS, Kofoed EM, Chavarria-Smith J, Vance RE (2013) Recognition of bacteria by inflammasomes. Annu Rev Immunol 31:73–106. doi:10.1146/annurev-immunol-032712-095944

    Article  Google Scholar 

  10. Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, Peaper DR, Bertin J, Eisenbarth SC, Gordon JI (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145:745–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Khare S, Dorfleutner A, Bryan NB, Yun C, Radian AD, de Almeida L, Rojanasakul Y, Stehlik C (2012) An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 36:464–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vladimer GI, Weng D, Paquette SWM, Vanaja SK, Rathinam VAK, Aune MH, Conlon JE, Burbage JJ, Proulx MK, Liu Q, Reed G, Mecsas JC, Iwakura Y, Bertin J, Goguen JD, Fitzgerald KA, Lien E (2012) The NLRP12 inflammasome recognizes Yersinia pestis. Immunity 37:96–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Núñez G, Schnurr M, Espevik T, Lien E, Fitzgerald KA, Rock KL, Moore KJ, Wright SD, Hornung V, Latz E (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493 (7434):674–678

    Google Scholar 

  15. Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA, Becker C, Franchi L, Yoshihara E, Chen Z, Mullooly N, Mielke LA, Harris J, Coll RC, Mills KHG, Mok KH, Newsholme P, Núñez G, Yodoi J, Kahn SE, Lavelle EC, O’Neill LAJ (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1[beta] in type 2 diabetes. Nat Immunol 11:897–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241

    Article  CAS  PubMed  Google Scholar 

  17. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, Hornung V, Latz E (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183:787–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bartok E, Bauernfeind F, Khaminets MG, Jakobs C, Monks B, Fitzgerald KA, Latz E, Hornung V (2013) iGLuc: a luciferase-based inflammasome and protease activity reporter. Nat Methods 10:147–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Abdul-Sater AA, Koo E, Hacker G, Ojcius DM (2009) Inflammasome-dependent caspase-1 activation in cervical epithelial cells stimulates growth of the intracellular pathogen chlamydia trachomatis. J Biol Chem 284:26789–26796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheng W, Shivshankar P, Li Z, Chen L, Yeh I-T, Zhong G (2008) Caspase-1 contributes to Chlamydia trachomatis-induced upper urogenital tract inflammatory pathologies without affecting the course of infection. Infect Immun 76:515–522

    Article  CAS  PubMed  Google Scholar 

  21. Kutner RH, Zhang X-Y, Reiser J (2009) Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc 4:495–505

    Article  CAS  PubMed  Google Scholar 

  22. Cornetta K, Anderson WF (1989) Protamine sulfate as an effective alternative to polybrene in retroviral-mediated gene-transfer: implications for human gene therapy. J Virol Methods 23:187–194

    Article  CAS  PubMed  Google Scholar 

  23. Dode C, Le Du N, Cuisset L, Letourneur F, Berthelot JM, Vaudour G, Meyrier A, Watts RA, Scott DG, Nicholls A, Granel B, Frances C, Garcier F, Edery P, Boulinguez S, Domergues JP, Delpech M, Grateau G (2002) New mutations of CIAS1 that are responsible for Muckle-Wells syndrome and familial cold urticaria: a novel mutation underlies both syndromes. Am J Hum Genet 70(6):1498–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim S, Bauernfeind F, Ablasser A, Hartmann G, Fitzgerald KA, Latz E, Hornung V (2010) Listeria monocytogenes is sensed by the NLRP3 and AIM2 inflammasome. Eur J Immunol 40:1545–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu C, Suzuki-Ogoh C, Ohmiya Y (2007) Dual-reporter assay using two secreted luciferase genes. Biotechniques 42:290, 292

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veit Hornung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bartok, E., Kampes, M., Hornung, V. (2016). Measuring IL-1β Processing by Bioluminescence Sensors II: The iGLuc System. In: Di Virgilio, F., Pelegrín, P. (eds) NLR Proteins. Methods in Molecular Biology, vol 1417. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3566-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3566-6_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3564-2

  • Online ISBN: 978-1-4939-3566-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics