Active and Passive Immunotherapy Against Tau: Effects and Potential Mechanisms

  • Kiran Yanamandra
  • Marc I. Diamond
  • David M. HoltzmanEmail author
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


The aggregation, hyperphosphorylation, and accumulation of the microtubule-associated protein tau is a hallmark for several neurodegenerative diseases, including Alzheimer’s disease. These diseases are known as tauopathies. In tauopathies, the tau protein becomes hyperphosphorylated and forms intracellular neurofibrillary tangles visualized within dystrophic neurites and cell bodies. Evidence suggests that some tau aggregates can become extracellular where they potentially propagate between cells and induce tau pathology in previously unaffected cells. The amount of tau pathology correlates well with the load of neurofibrillary tangles, synaptic loss, and functional decline in humans as well as in transgenic mouse models of tauopathy. Several active and passive immunization studies targeting tau in transgenic mouse models have shown reduced tau pathology, although the mechanism(s) underlying these effects is not clear. In this chapter, we review the recent active and passive immunization strategies targeting tau in mouse models and our understanding of potential mechanisms underlying the effects seen.

Key words

Tau Immunotherapy Alzheimer’s disease Neurodegeneration Antibody 



This work was supported by research grants from the Tau consortium and C2N Diagnostics (M.I.D. and D.M.H.).


  1. 1.
    Goode BL, Feinstein SC (1994) Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau. J Cell Biol 124(5):769–782CrossRefPubMedGoogle Scholar
  2. 2.
    Gustke N, Trinczek B, Biernat J, Mandelkow EM, Mandelkow E (1994) Domains of tau protein and interactions with microtubules. Biochemistry 33(32):9511–9522CrossRefPubMedGoogle Scholar
  3. 3.
    Musiek ES, Holtzman DM (2012) Origins of Alzheimer’s disease: reconciling cerebrospinal fluid biomarker and neuropathology data regarding the temporal sequence of amyloid-beta and tau involvement. Curr Opin Neurol 25(6):715–720. doi: 10.1097/WCO.0b013e32835a30f4 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mandelkow EM, Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2(7):a006247. doi: 10.1101/cshperspect.a006247, Pii: a006247CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Brody DL, Holtzman DM (2008) Active and passive immunotherapy for neurodegenerative disorders. Annu Rev Neurosci 31:175–193. doi: 10.1146/annurev.neuro.31.060407.125529 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rosenmann H, Grigoriadis N, Karussis D, Boimel M, Touloumi O, Ovadia H, Abramsky O (2006) Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein. Arch Neurol 63(10):1459–1467. doi: 10.1001/archneur.63.10.1459, Pii: 63/10/145CrossRefPubMedGoogle Scholar
  7. 7.
    Boimel M, Grigoriadis N, Lourbopoulos A, Haber E, Abramsky O, Rosenmann H (2010) Efficacy and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice. Exp Neurol 224(2):472–485. doi: 10.1016/j.expneurol.2010.05.010, Pii: S0014-4886(10)00168-8CrossRefPubMedGoogle Scholar
  8. 8.
    Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM (2007) Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci 27(34):9115–9129. doi: 10.1523/JNEUROSCI.2361-07.2007, pii:27/34/9115CrossRefPubMedGoogle Scholar
  9. 9.
    Boutajangout A, Quartermain D, Sigurdsson EM (2010) Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J Neurosci 30(49):16559–16566. doi: 10.1523/JNEUROSCI.4363-10.2010, pii: 30/49/16559CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Andorfer C, Acker CM, Kress Y, Hof PR, Duff K, Davies P (2005) Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci 25(22):5446–5454. doi: 10.1523/JNEUROSCI.4637-04.2005, pii: 25/22/5446CrossRefPubMedGoogle Scholar
  11. 11.
    Duff K, Eckman C, Zehr C, Yu X, Prada CM, Perez-tur J, Hutton M, Buee L, Harigaya Y, Yager D, Morgan D, Gordon MN, Holcomb L, Refolo L, Zenk B, Hardy J, Younkin S (1996) Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 383(6602):710–713. doi: 10.1038/383710a0 CrossRefPubMedGoogle Scholar
  12. 12.
    Bi M, Ittner A, Ke YD, Gotz J, Ittner LM (2011) Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice. PLoS One 6(12), e26860. doi: 10.1371/journal.pone.0026860, pii: PONE-D-11-15839CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Troquier L, Caillierez R, Burnouf S, Fernandez-Gomez FJ, Grosjean ME, Zommer N, Sergeant N, Schraen-Maschke S, Blum D, Buee L (2012) Targeting phospho-Ser422 by active Tau immunotherapy in the THYTau22 mouse model: a suitable therapeutic approach. Curr Alzheimer Res 9(4):397–405, doi:CAR-EPUB-20120123-019 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Otvos L Jr, Feiner L, Lang E, Szendrei GI, Goedert M, Lee VM (1994) Monoclonal antibody PHF-1 recognizes tau protein phosphorylated at serine residues 396 and 404. J Neurosci Res 39(6):669–673. doi: 10.1002/jnr.490390607 CrossRefPubMedGoogle Scholar
  15. 15.
    Jicha GA, Weaver C, Lane E, Vianna C, Kress Y, Rockwood J, Davies P (1999) cAMP-dependent protein kinase phosphorylations on tau in Alzheimer’s disease. J Neurosci 19(17):7486–7494PubMedGoogle Scholar
  16. 16.
    Chai X, Wu S, Murray TK, Kinley R, Cella CV, Sims H, Buckner N, Hanmer J, Davies P, O’Neill MJ, Hutton ML, Citron M (2011) Passive immunization with anti-Tau antibodies in two transgenic models: reduction of Tau pathology and delay of disease progression. J Biol Chem 286(39):34457–34467. doi: 10.1074/jbc.M111.229633, pii: M111.229633CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Boutajangout A, Ingadottir J, Davies P, Sigurdsson EM (2011) Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J Neurochem 118(4):658–667. doi: 10.1111/j.1471-4159.2011.07337.x CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    d’Abramo C, Acker CM, Jimenez HT, Davies P (2013) Tau passive immunotherapy in mutant P301L mice: antibody affinity versus specificity. PLoS One 8(4):e62402. doi: 10.1371/journal.pone.0062402, pii: PONE-D-13-01397CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Lasagna-Reeves CA, Gerson JE, Singh G, Estes DM, Barrett AD, Dineley KT, Jackson GR, Kayed R (2014) Passive immunization with Tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J Neurosci 34(12):4260–4272. doi: 10.1523/JNEUROSCI.3192-13.2014, pii: 34/12/4260CrossRefPubMedGoogle Scholar
  20. 20.
    Yanamandra K, Kfoury N, Jiang H, Mahan TE, Ma S, Maloney SE, Wozniak DF, Diamond MI, Holtzman DM (2013) Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron 80(2):402–414. doi: 10.1016/j.neuron.2013.07.046, pii: S0896-6273(13)00670-3CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yanamandra K, Jiang H, Mahan TE, Maloney SE, Wozniak DF, Diamond MI, Holtzman DM (2015) Anti-tau antibody reduces insoluble tau and decreases brain atrophy. Ann Clin Transl Neurol 2(3):278–288. doi: 10.1002/acn3.176 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yamada K, Cirrito JR, Stewart FR, Jiang H, Finn MB, Holmes BB, Binder LI, Mandelkow EM, Diamond MI, Lee VM, Holtzman DM (2011) In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice. J Neurosci 31(37):13110–13117. doi: 10.1523/JNEUROSCI.2569-11.2011, pii: 31/37/13110CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Guo JL, Lee VM (2011) Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles. J Biol Chem 286(17):15317–15331. doi: 10.1074/jbc.M110.209296, pii: M110.209296CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284(19):12845–12852. doi: 10.1074/jbc.M808759200, pii: M808759200CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11(7):909–913. doi: 10.1038/ncb1901, pii: ncb1901CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Kiritoshi T, Neugebauer V, Jackson GR, Kayed R (2012) Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci Rep 2:700. doi: 10.1038/srep00700 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Liu L, Drouet V, Wu JW, Witter MP, Small SA, Clelland C, Duff K (2012) Trans-synaptic spread of tau pathology in vivo. PLoS One 7(2), e31302. doi: 10.1371/journal.pone.0031302, pii: PONE-D-11-23353CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    de Calignon A, Polydoro M, Suarez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, Pitstick R, Sahara N, Ashe KH, Carlson GA, Spires-Jones TL, Hyman BT (2012) Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73(4):685–697. doi: 10.1016/j.neuron.2011.11.033, pii: S0896-6273(12)00038-4CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Iba M, Guo JL, McBride JD, Zhang B, Trojanowski JQ, Lee VM (2013) Synthetic Tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy. J Neurosci 33(3):1024–1037. doi: 10.1523/JNEUROSCI.2642-12.2013, pii: 33/3/1024CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Clavaguera F, Akatsu H, Fraser G, Crowther RA, Frank S, Hench J, Probst A, Winkler DT, Reichwald J, Staufenbiel M, Ghetti B, Goedert M, Tolnay M (2013) Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci U S A 110(23):9535–9540. doi: 10.1073/pnas.1301175110, pii: 1301175110CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sanders DW, Kaufman SK, DeVos SL, Sharma AM, Mirbaha H, Li A, Barker SJ, Foley AC, Thorpe JR, Serpell LC, Miller TM, Grinberg LT, Seeley WW, Diamond MI (2014) Distinct Tau prion strains propagate in cells and mice and define different tauopathies.. doi: 10.1016/j.neuron.2014.04.047, pii: Neuron, doi:S0896-6273(14)00362-6Google Scholar
  32. 32.
    Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8(2):101–112. doi: 10.1038/nrm2101, pii: doi:nrm2101CrossRefPubMedGoogle Scholar
  33. 33.
    Wittmann CW, Wszolek MF, Shulman JM, Salvaterra PM, Lewis J, Hutton M, Feany MB (2001) Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293(5530):711–714. doi: 10.1126/science.1062382, pii: 1062382CrossRefPubMedGoogle Scholar
  34. 34.
    Kuchibhotla KV, Wegmann S, Kopeikina KJ, Hawkes J, Rudinskiy N, Andermann ML, Spires-Jones TL, Bacskai BJ, Hyman BT (2014) Neurofibrillary tangle-bearing neurons are functionally integrated in cortical circuits in vivo. Proc Natl Acad Sci U S A 111(1):510–514. doi: 10.1073/pnas.1318807111, pii: 1318807111CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    de Calignon A, Fox LM, Pitstick R, Carlson GA, Bacskai BJ, Spires-Jones TL, Hyman BT (2010) Caspase activation precedes and leads to tangles. Nature 464(7292):1201–1204. doi: 10.1038/nature08890, pii: nature08890CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Congdon EE, Gu J, Sait HB, Sigurdsson EM (2013) Antibody uptake into neurons occurs primarily via clathrin-dependent Fcgamma receptor endocytosis and is a prerequisite for acute tau protein clearance. J Biol Chem 288(49):35452–35465. doi: 10.1074/jbc.M113.491001, pii: M113.491001CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sigurdsson EM (2009) Tau-focused immunotherapy for Alzheimer’s disease and related tauopathies. Curr Alzheimer Res 6(5):446–450, pii: CAR-7CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Karch CM, Jeng AT, Goate AM (2012) Extracellular Tau levels are influenced by variability in Tau that is associated with tauopathies. J Biol Chem 287(51):42751–42762. doi: 10.1074/jbc.M112.380642, pii: M112.380642CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Chai X, Dage JL, Citron M (2012) Constitutive secretion of tau protein by an unconventional mechanism. Neurobiol Dis 48(3):356–366. doi: 10.1016/j.nbd.2012.05.021, pii: S0969-9961(12)00207-0CrossRefPubMedGoogle Scholar
  40. 40.
    Yamada K, Holth JK, Liao F, Stewart FR, Mahan TE, Jiang H, Cirrito JR, Patel TK, Hochgrafe K, Mandelkow EM, Holtzman DM (2014) Neuronal activity regulates extracellular tau in vivo. J Exp Med 211(3):387–393. doi: 10.1084/jem.20131685, pii: jem.20131685CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Pooler AM, Phillips EC, Lau DH, Noble W, Hanger DP (2013) Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep 14(4):389–394. doi: 10.1038/embor.2013.15, pii: embor201315CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ding WX, Yin XM (2008) Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome. Autophagy 4(2):141–150, pii: doi:5190CrossRefPubMedGoogle Scholar
  43. 43.
    Mohamed HA, Mosier DR, Zou LL, Siklos L, Alexianu ME, Engelhardt JI, Beers DR, Le WD, Appel SH (2002) Immunoglobulin Fc gamma receptor promotes immunoglobulin uptake, immunoglobulin-mediated calcium increase, and neurotransmitter release in motor neurons. J Neurosci Res 69(1):110–116. doi: 10.1002/jnr.10271 CrossRefPubMedGoogle Scholar
  44. 44.
    Andoh T, Kuraishi Y (2004) Direct action of immunoglobulin G on primary sensory neurons through Fc gamma receptor I. FASEB J 18(1):182–184. doi: 10.1096/fj.02-1169fje, pii: 02-1169fjePubMedGoogle Scholar
  45. 45.
    Niu N, Zhang J, Guo Y, Zhao Y, Korteweg C, Gu J (2011) Expression and distribution of immunoglobulin G and its receptors in the human nervous system. Int J Biochem Cell Biol 43(4):556–563. doi: 10.1016/j.biocel.2010.12.012, pii: S1357-2725(10)00424-3CrossRefPubMedGoogle Scholar
  46. 46.
    Bae EJ, Lee HJ, Rockenstein E, Ho DH, Park EB, Yang NY, Desplats P, Masliah E, Lee SJ (2012) Antibody-aided clearance of extracellular alpha-synuclein prevents cell-to-cell aggregate transmission. J Neurosci 32(39):13454–13469. doi: 10.1523/JNEUROSCI.1292-12.2012, pii: 32/39/13454CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ravetch JV, Bolland S (2001) IgG Fc receptors. Annu Rev Immunol 19:275–290. doi: 10.1146/annurev.immunol.19.1.275, pii: 19/1/275CrossRefPubMedGoogle Scholar
  48. 48.
    McEwan WA, Tam JC, Watkinson RE, Bidgood SR, Mallery DL, James LC (2013) Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nat Immunol 14(4):327–336. doi: 10.1038/ni.2548, pii: ni.2548CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Mallery DL, McEwan WA, Bidgood SR, Towers GJ, Johnson CM, James LC (2010) Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). Proc Natl Acad Sci U S A 107(46):19985–19990. doi: 10.1073/pnas.1014074107, pii: 1014074107CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Bellucci A, Westwood AJ, Ingram E, Casamenti F, Goedert M, Spillantini MG (2004) Induction of inflammatory mediators and microglial activation in mice transgenic for mutant human P301S tau protein. Am J Pathol 165(5):1643–1652. doi: 10.1016/S0002-9440(10)63421-9, pii: S0002-9440(10)63421-9CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ikeda M, Shoji M, Kawarai T, Kawarabayashi T, Matsubara E, Murakami T, Sasaki A, Tomidokoro Y, Ikarashi Y, Kuribara H, Ishiguro K, Hasegawa M, Yen SH, Chishti MA, Harigaya Y, Abe K, Okamoto K, St George-Hyslop P, Westaway D (2005) Accumulation of filamentous tau in the cerebral cortex of human tau R406W transgenic mice. Am J Pathol 166(2):521–531. doi: 10.1016/S0002-9440(10)62274-2, pii: S0002-9440(10)62274-2CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Sasaki A, Kawarabayashi T, Murakami T, Matsubara E, Ikeda M, Hagiwara H, Westaway D, George-Hyslop PS, Shoji M, Nakazato Y (2008) Microglial activation in brain lesions with tau deposits: comparison of human tauopathies and tau transgenic mice TgTauP301L. Brain Res 1214:159–168. doi: 10.1016/j.brainres.2008.02.084, pii: S0006-8993(08)00554-4CrossRefPubMedGoogle Scholar
  53. 53.
    Zilka N, Stozicka Z, Kovac A, Pilipcinec E, Bugos O, Novak M (2009) Human misfolded truncated tau protein promotes activation of microglia and leukocyte infiltration in the transgenic rat model of tauopathy. J Neuroimmunol 209(1-2):16–25. doi: 10.1016/j.jneuroim.2009.01.013, pii: S0165-5728(09)00020-4CrossRefPubMedGoogle Scholar
  54. 54.
    Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VM (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53(3):337–351. doi: 10.1016/j.neuron.2007.01.010, pii: S0896-6273(07)00030-XCrossRefPubMedGoogle Scholar
  55. 55.
    Wilcock DM, DiCarlo G, Henderson D, Jackson J, Clarke K, Ugen KE, Gordon MN, Morgan D (2003) Intracranially administered anti-Abeta antibodies reduce beta-amyloid deposition by mechanisms both independent of and associated with microglial activation. J Neurosci 23(9):3745–3751, doi:23/9/3745 [pii]PubMedGoogle Scholar
  56. 56.
    Bacskai BJ, Kajdasz ST, Christie RH, Carter C, Games D, Seubert P, Schenk D, Hyman BT (2001) Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nat Med 7(3):369–372. doi: 10.1038/85525, pii: 85525CrossRefPubMedGoogle Scholar
  57. 57.
    Gessner JE, Heiken H, Tamm A, Schmidt RE (1998) The IgG Fc receptor family. Ann Hematol 76(6):231–248CrossRefPubMedGoogle Scholar
  58. 58.
    Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Lieberburg I, Motter R, Nguyen M, Soriano F, Vasquez N, Weiss K, Welch B, Seubert P, Schenk D, Yednock T (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6(8):916–919. doi: 10.1038/78682 CrossRefPubMedGoogle Scholar
  59. 59.
    Serrano-Pozo A, Muzikansky A, Gomez-Isla T, Growdon JH, Betensky RA, Frosch MP, Hyman BT (2013) Differential relationships of reactive astrocytes and microglia to fibrillar amyloid deposits in Alzheimer disease. J Neuropathol Exp Neurol 72(6):462–471. doi: 10.1097/NEN.0b013e3182933788 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Wilcock DM, Munireddy SK, Rosenthal A, Ugen KE, Gordon MN, Morgan D (2004) Microglial activation facilitates Abeta plaque removal following intracranial anti-Abeta antibody administration. Neurobiol Dis 15(1):11–20, doi:S0969996103001955 [pii]CrossRefPubMedGoogle Scholar
  61. 61.
    Dodart JC, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C, DeLong CA, Wu S, Wu X, Holtzman DM, Paul SM (2002) Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nat Neurosci 5(5):452–457. doi: 10.1038/nn842, pii: nn842PubMedGoogle Scholar
  62. 62.
    DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM (2001) Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 98(15):8850–8855. doi: 10.1073/pnas.151261398, pii: 151261398CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    DeMattos RB, Bales KR, Cummins DJ, Paul SM, Holtzman DM (2002) Brain to plasma amyloid-beta efflux: a measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science 295(5563):2264–2267. doi: 10.1126/science.1067568, pii: 295/5563/2264CrossRefPubMedGoogle Scholar
  64. 64.
    Yamada K, Yabuki C, Seubert P, Schenk D, Hori Y, Ohtsuki S, Terasaki T, Hashimoto T, Iwatsubo T (2009) Abeta immunotherapy: intracerebral sequestration of Abeta by an anti-Abeta monoclonal antibody 266 with high affinity to soluble Abeta. J Neurosci 29(36):11393–11398. doi: 10.1523/JNEUROSCI.2021-09.2009, pii: 29/36/11393CrossRefPubMedGoogle Scholar
  65. 65.
    Abbott NJ (2004) Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 45(4):545–552. doi: 10.1016/j.neuint.2003.11.006, pii: S0197018603002675CrossRefPubMedGoogle Scholar
  66. 66.
    Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4(147):147ra111. doi: 10.1126/scitranslmed.3003748, pii: 4/147/147ra111PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kiran Yanamandra
    • 1
  • Marc I. Diamond
    • 2
  • David M. Holtzman
    • 1
    Email author
  1. 1.Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research CenterWashington University School of MedicineSt. LouisUSA
  2. 2.Department of Neurology and NeurotherapeuticsUniversity of Texas, Southwestern Medical CenterDallasUSA

Personalised recommendations