Skip to main content

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 980 Accesses

Abstract

Great strides have been made in recent years on the development of tau immunotherapies for Alzheimer’s disease and other tauopathies. Multiple animal studies by several groups have shown efficacy of various active and passive approaches in reducing pathological tau proteins. Clinical trials are clearly warranted and a few have already been initiated. However, much remains to be clarified regarding the mechanisms of action and how efficacy can be improved and potential toxicity minimized. These are exciting times for the field and will hopefully lead to an effective therapy in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holmes C, Boche D, Wilkinson D et al (2008) Long-term effects of A beta(42) immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372(9634):216–223

    Article  CAS  PubMed  Google Scholar 

  2. Aisen PS, Vellas B (2013) Passive immunotherapy for Alzheimer’s disease: what have we learned, and where are we headed? J Nutr Health Aging 17(1):49–50

    Article  CAS  PubMed  Google Scholar 

  3. Fagan T (2014) Crenezumab disappoints - Phase 2 - Researchers remain hopeful. http://www.alzforum. org/news/conference-coverage/crenezumab-disappoints-phase-2-researchers-remain-hopeful. Accessed 13 Aug 2014

  4. Strobel G (2015) Aducanumab, solanezumab, gantenerumab data lift crenezumab, as well. http://www.alzforum.org/news/conference-coverage/aducanumab-solanezumab-gantenerumab-data-lift-crenezumab-well. Accessed 21 Aug 2015

  5. Wilcock GK, Esiri MM (1982) Plaques, tangles and dementia: a quantitative study. J Neurol Sci 56(2-3):343–356

    Article  CAS  PubMed  Google Scholar 

  6. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42(3 Pt 1):631–639

    Article  CAS  PubMed  Google Scholar 

  7. Strobel G (2014) NIH director announces $100M prevention trial of Genentech antibody. http://www. alzforum.org/news/conference-coverage/nih-director-announces-100m-prevention-trial-genentech-antibody. Accessed 13 Aug 2014

    Google Scholar 

  8. Sigurdsson EM. Immune therapy for AD plaques and tangles. [Project period begin date 09/30/2001]. NIH, 1R01AG020197

    Google Scholar 

  9. Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM (2007) Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci 27(34):9115–9129

    Article  CAS  PubMed  Google Scholar 

  10. Boutajangout A, Quartermain D, Sigurdsson EM (2010) Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J Neurosci 30(49):16559–16566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boutajangout A, Ingadottir J, Davies P, Sigurdsson EM (2011) Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J Neurochem 118(4):658–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Krishnamurthy PK, Deng Y, Sigurdsson EM (2011) Mechanistic studies of antibody-mediated clearance of tau aggregates using an ex vivo brain slice model. Front Psychiatry 2:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sigurdsson EM (2009) Tau-focused immunotherapy for Alzheimer’s disease and related tauopathies. Curr Alzheimer Res 6(5):446–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Congdon EE, Gu J, Sait HB, Sigurdsson EM (2013) Antibody uptake into neurons occurs primarily via clathrin-dependent Fcgamma receptor endocytosis and is a prerequisite for acute tau protein clearance. J Biol Chem 288(49):35452–35465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284(19):12845–12852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clavaguera F, Bolmont T, Crowther RA et al (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11(7):909–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim W, Lee S, Jung C, Ahmed A, Lee G, Hall GF (2010) Interneuronal transfer of human tau between Lamprey central neurons in situ. J Alzheimers Dis 19(2):647–664

    CAS  PubMed  Google Scholar 

  18. Liu L, Drouet V, Wu JW et al (2012) Trans-synaptic spread of tau pathology in vivo. PLoS ONE 7(2):e31302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kfoury N, Holmes BB, Jiang H, Holtzman DM, Diamond MI (2012) Trans-cellular propagation of tau aggregation by fibrillar species. J Biol Chem 287(23):19440–19451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Santa-Maria I, Varghese M, Ksiezak-Reding H, Dzhun A, Wang J, Pasinetti GM (2012) Paired helical filaments from Alzheimer disease brain induce intracellular accumulation of tau protein in aggresomes. J Biol Chem 287(24):20522–20533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu JW, Herman M, Liu L et al (2013) Small misfolded tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J Biol Chem 288(3):1856–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Masliah E, Rockenstein E, Adame A et al (2005) Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 46(6):857–868

    Article  CAS  PubMed  Google Scholar 

  23. Tampellini D, Magrane J, Takahashi RH et al (2007) Internalized antibodies to the A beta domain of APP reduce neuronal A beta and protect against synaptic alterations. J Biol Chem 282(26):18895–18906

    Article  CAS  PubMed  Google Scholar 

  24. Masliah E, Rockenstein E, Mante M et al (2011) Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS ONE 6(4), e19338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Urushitani M, Ezzi SA, Julien JP (2007) Therapeutic effects of immunization with mutant superoxide dismutase in mice models of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 104(7):2495–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boimel M, Grigoriadis N, Lourbopoulos A, Haber E, Abramsky O, Rosenmann H (2010) Efficacy and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice. Exp Neurol 224(2):472–485

    Article  CAS  PubMed  Google Scholar 

  27. Chai X, Wu S, Murray TK et al (2011) Passive immunization with anti-tau antibodies in two transgenic models: reduction of tau pathology and delay of disease progression. J Biol Chem 286(39):34457–34467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bi M, Ittner A, Ke YD, Gotz J, Ittner LM (2011) Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice. PLoS One 6(12):e26860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Troquier L, Caillierez M, Burnouf S et al (2012) Targeting phospho-Ser422 by active tau immunotherapy in the THY-Tau22 mouse model: a suitable therapeutic approach. Curr Alzheimer Res 9(4):397–405

    Article  PubMed  PubMed Central  Google Scholar 

  30. d’Abramo C, Acker CM, Jimenez HT, Davies P (2013) Tau passive immunotherapy in mutant P301L mice: antibody affinity versus specificity. PLoS ONE 8(4):e62402

    Article  PubMed  PubMed Central  Google Scholar 

  31. Theunis C, Crespo-Biel N, Gafner V et al (2013) Efficacy and safety of a liposome-based vaccine against protein tau, assessed in Tau.P301L mice that model tauopathy. PLoS One 8(8):e72301

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yanamandra K, Kfoury N, Jiang H et al (2013) Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron 80(2):402–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gu J, Congdon EE, Sigurdsson EM (2013) Two novel tau antibodies targeting the 396/404 region are primarily taken up by neurons and reduce tau protein pathology. J Biol Chem 288(46):33081–33095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Castillo-Carranza DL, Gerson JE, Sengupta U, Guerrero-Munoz MJ, Lasagna-Reeves CA, Kayed R (2014) Specific targeting of tau oligomers in hTau mice prevents cognitive impairment and tau toxicity following injection with brain-derived tau oligomeric seeds. J Alzheimers Dis 40:S97–S111

    PubMed  Google Scholar 

  35. Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ et al (2014) Passive immunization with tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J Neurosci 34(12):4260–4272

    Article  PubMed  Google Scholar 

  36. Walls KC, Ager RR, Vasilevko V, Cheng D, Medeiros R, LaFerla FM (2014) p-Tau immunotherapy reduces soluble and insoluble tau in aged 3xTg-AD mice. Neurosci Lett 575:96–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Collin L, Bohrmann B, Gopfert U, Oroszlan-Szovik K, Ozmen L, Gruninger F (2014) Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer’s disease. Brain 137(Pt 10):2834–2846

    Article  PubMed  Google Scholar 

  38. Kontsekova E, Zilka N, Kovacech B, Novak P, Novak M (2014) First-in-man tau vaccine targeting structural determinants essential for pathological tau-tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer’s disease model. Alzheimers Res Ther 6(4):44

    Article  PubMed  PubMed Central  Google Scholar 

  39. Selenica ML, Davtyan H, Housley SB et al (2014) Epitope analysis following active immunization with tau proteins reveals immunogens implicated in tau pathogenesis. J Neuroinflammation 11:152

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bright J, Hussain S, Dang V et al (2015) Human secreted tau increases amyloid-beta production. Neurobiol Aging 36(2):693–709

    Article  CAS  PubMed  Google Scholar 

  41. Umeda T, Eguchi H, Kunori Y et al (2015) Passive immunotherapy of tauopathy targeting pSer413-tau: a pilot study in mice. Ann Clin Transl Neurol 2(3):241–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sankaranarayanan S, Barten DM, Vana L et al (2015) Passive immunization with phospho-tau antibodies reduces tau pathology and functional deficits in two distinct mouse tauopathy models. PLoS One 10(5):e0125614

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kondo A, Shahpasand K, Mannix R et al (2015) Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature 523(7561):431–436

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yanamandra K, Jiang H, Mahan TE et al (2015) Anti-tau antibody reduces insoluble tau and decreases brain atrophy. Ann Clin Transl Neurol 2(3):278–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Funk KE, Mirbaha H, Jiang H, Holtzman DM, Diamond MI (2015) Distinct therapeutic mechanisms of tau antibodies: promoting microglial clearance vs. blocking neuronal uptake. J Biol Chem 290(35):21652–62

    Article  CAS  PubMed  Google Scholar 

  46. d’Abramo C, Acker CM, Jimenez H, Davies P (2015) Passive immunization in JNPL3 transgenic mice using an array of phospho-tau specific antibodies. PLoS One 10(8):e0135774

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ittner A, Bertz J, Suh LS, Stevens CH, Gotz J, Ittner LM (2015) Tau-targeting passive immunization modulates aspects of pathology in tau transgenic mice. J Neurochem 132(1):135–145

    Article  CAS  PubMed  Google Scholar 

  48. Bumbaca D, Boswell CA, Fielder PJ, Khawli LA (2012) Physiochemical and biochemical factors influencing the pharmacokinetics of antibody therapeutics. AAPS J 14(3):554–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sigurdsson EM (2008) Immunotherapy targeting pathological tau protein in Alzheimer’s disease and related tauopathies. J Alzheimers Dis 15:157–168

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pfeifer M, Boncristiano S, Bondolfi L et al (2002) Cerebral hemorrhage after passive anti-Abeta immunotherapy. Science 298(5597):1379

    Article  CAS  PubMed  Google Scholar 

  51. Morgan D (2009) The role of microglia in antibody-mediated clearance of amyloid-beta from the brain. CNS Neurol Disord Drug Targets 8(1):7–15

    Google Scholar 

  52. Chai X, Dage JL, Citron M (2012) Constitutive secretion of tau protein by an unconventional mechanism. Neurobiol Dis 48(3):356–366

    Article  CAS  PubMed  Google Scholar 

  53. Shi Y, Kirwan P, Smith J, MacLean G, Orkin SH, Livesey FJ (2012) A human stem cell model of early Alzheimer’s disease pathology in Down syndrome. Sci Transl Med 4(124):124ra29

    PubMed  PubMed Central  Google Scholar 

  54. Saman S, Kim W, Raya M et al (2012) Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J Biol Chem 287(6):3842–3849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Simon D, Garcia-Garcia E, Royo F, Falcon-Perez JM, Avila J (2012) Proteostasis of tau. Tau overexpression results in its secretion via membrane vesicles. FEBS Lett 586(1):47–54

    Article  CAS  PubMed  Google Scholar 

  56. Yamada K, Cirrito JR, Stewart FR et al (2011) In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice. J Neurosci 31(37):13110–13117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Plouffe V, Mohamed NV, Rivest-McGraw J, Bertrand J, Lauzon M, Leclerc N (2012) Hyperphosphorylation and cleavage at D421 enhance tau secretion. PLoS One 7(5):e36873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Karch CM, Jeng AT, Goate AM (2012) Extracellular tau levels are influenced by variability in tau that is associated with tauopathies. J Biol Chem 287(51):42751–42762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pooler AM, Phillips EC, Lau DH, Noble W, Hanger DP (2013) Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep 14(4):389–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Medina M, Avila J (2014) The role of extracellular tau in the spreading of neurofibrillary pathology. Front Cell Neurosci 8:113

    PubMed  PubMed Central  Google Scholar 

  61. Rosenmann H, Grigoriadis N, Karussis D et al (2006) Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein. Arch Neurol 63(10):1459–1467

    Article  PubMed  Google Scholar 

  62. Rozenstein-Tsalkovich L, Grigoriadis N, Lourbopoulos A et al (2013) Repeated immunization of mice with phosphorylated-tau peptides causes neuroinflammation. Exp Neurol 248:451–456

    Article  CAS  PubMed  Google Scholar 

  63. Mably AJ, Kanmert D, Mc Donald JM et al (2015) Tau immunization: a cautionary tale? Neurobiol Aging 36(3):1316–1332

    Article  CAS  PubMed  Google Scholar 

  64. Harada A, Oguchi K, Okabe S et al (1994) Altered microtubule organization in small-caliber axons of mice lacking tau-protein. Nature 369(6480):488–491

    Article  CAS  PubMed  Google Scholar 

  65. Dawson HN, Ferreira A, Eyster MV, Ghoshal N, Binder LI, Vitek MP (2001) Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J Cell Sci 114(6):1179–1187

    CAS  PubMed  Google Scholar 

  66. Tucker KL, Meyer M, Barde YA (2001) Neurotrophins are required for nerve growth during development. Nat Neurosci 4(1):29–37

    Article  CAS  PubMed  Google Scholar 

  67. Fujio K, Sato M, Uemura T, Sato T, Sato-Harada R, Harada A (2007) 14-3-3 proteins and protein phosphatases are not reduced in tau-deficient mice. Neuroreport 18(10):1049–1052

    Article  CAS  PubMed  Google Scholar 

  68. Ikegami S, Harada A, Hirokawa N (2000) Muscle weakness, hyperactivity, and impairment in fear conditioning in tau-deficient mice. Neurosci Lett 279(3):129–132

    Article  CAS  PubMed  Google Scholar 

  69. Lei P, Ayton S, Finkelstein DI et al (2012) Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat Med 18(2):291–295

    Article  CAS  PubMed  Google Scholar 

  70. Ke YD, Suchowerska AK, van der Hoven J et al (2012) Lessons from tau-deficient mice. Int J Alzheimers Dis 2012:873270

    PubMed  PubMed Central  Google Scholar 

  71. Rapoport M, Dawson HN, Binder LI, Vitek MP, Ferreira A (2002) Tau is essential to beta-amyloid-induced neurotoxicity. Proc Natl Acad Sci U S A 99(9):6364–6369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Roberson ED, Scearce-Levie K, Palop JJ et al (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316(5825):750–754

    Article  CAS  PubMed  Google Scholar 

  73. Ittner LM, Ke YD, Delerue F et al (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142(3):387–397

    Article  CAS  PubMed  Google Scholar 

  74. Congdon EE, Krishnaswamy S, Sigurdsson EM (2014) Harnessing the immune system for treatment and detection of tau pathology. J Alzheimers Dis 40:S113–S121

    PubMed  PubMed Central  Google Scholar 

  75. Krishnaswamy S, Lin Y, Rajamohamedsait WJ, Rajamohamedsait HB, Krishnamurthy P, Sigurdsson EM (2014) Antibody-derived in vivo imaging of tau pathology. J Neurosci 34(50):16835–16850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Axon Neuroscience SE (2015) NCT01850238: safety study of AADvac1, a tau peptide-KLH-conjugate active vaccine to treat Alzheimer’s disease. ClinicalTrials.gov

    Google Scholar 

  77. Bristol-Meyers Squibb (2015) NCT02294851: a randomized, double-blind, placebo-controlled, single ascending dose study of intravenously administered BMS-986168 in healthy subjects. ClinicalTrials.gov

    Google Scholar 

  78. Bristol-Meyers Squibb (2015) NCT02460094: Multiple ascending dose study of intravenously administered BMS-986168 in patients with progressive supranuclear palsy (CN002-003). ClinicalTrials.gov

    Google Scholar 

  79. Hoffmann-La-Roche (2015) NCT02281786: a study of RO6926496 in healthy volunteers. ClinicalTrials.gov

    Google Scholar 

  80. C2N Diagnostics - Abbvie (2015) NCT02494024: safety, tolerability and pharmacokinetics of C2N-8E12 in subjects with progressive supranuclear palsy. ClinicalTrials.gov

    Google Scholar 

  81. Pedersen JT, Sigurdsson EM (2015) Tau immunotherapy for Alzheimer’s disease. Trends Mol Med 21(6):394–402

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E.M.S. is supported by NIH grants NS077239, AG032611, and AG020197. He is an inventor on patents on tau immunotherapy and related diagnostics that are assigned to New York University. This technology is licensed to and is being co-developed with H. Lundbeck A/S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Einar M. Sigurdsson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sigurdsson, E.M. (2016). Tau Immunotherapy. In: Ingelsson, M., Lannfelt, L. (eds) Immunotherapy and Biomarkers in Neurodegenerative Disorders. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3560-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3560-4_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3558-1

  • Online ISBN: 978-1-4939-3560-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics