Advertisement

Tau Immunotherapy

  • Einar M. SigurdssonEmail author
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Great strides have been made in recent years on the development of tau immunotherapies for Alzheimer’s disease and other tauopathies. Multiple animal studies by several groups have shown efficacy of various active and passive approaches in reducing pathological tau proteins. Clinical trials are clearly warranted and a few have already been initiated. However, much remains to be clarified regarding the mechanisms of action and how efficacy can be improved and potential toxicity minimized. These are exciting times for the field and will hopefully lead to an effective therapy in the near future.

Key words

Tau Immunotherapy Alzheimer’s disease Tauopathies Neurofibrillary tangles Immunization Vaccine Aggregates 

Notes

Acknowledgements

E.M.S. is supported by NIH grants NS077239, AG032611, and AG020197. He is an inventor on patents on tau immunotherapy and related diagnostics that are assigned to New York University. This technology is licensed to and is being co-developed with H. Lundbeck A/S.

References

  1. 1.
    Holmes C, Boche D, Wilkinson D et al (2008) Long-term effects of A beta(42) immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372(9634):216–223CrossRefPubMedGoogle Scholar
  2. 2.
    Aisen PS, Vellas B (2013) Passive immunotherapy for Alzheimer’s disease: what have we learned, and where are we headed? J Nutr Health Aging 17(1):49–50CrossRefPubMedGoogle Scholar
  3. 3.
    Fagan T (2014) Crenezumab disappoints - Phase 2 - Researchers remain hopeful. http://www.alzforum. org/news/conference-coverage/crenezumab-disappoints-phase-2-researchers-remain-hopeful. Accessed 13 Aug 2014
  4. 4.
    Strobel G (2015) Aducanumab, solanezumab, gantenerumab data lift crenezumab, as well. http://www.alzforum.org/news/conference-coverage/aducanumab-solanezumab-gantenerumab-data-lift-crenezumab-well. Accessed 21 Aug 2015
  5. 5.
    Wilcock GK, Esiri MM (1982) Plaques, tangles and dementia: a quantitative study. J Neurol Sci 56(2-3):343–356CrossRefPubMedGoogle Scholar
  6. 6.
    Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42(3 Pt 1):631–639CrossRefPubMedGoogle Scholar
  7. 7.
    Strobel G (2014) NIH director announces $100M prevention trial of Genentech antibody. http://www. alzforum.org/news/conference-coverage/nih-director-announces-100m-prevention-trial-genentech-antibody. Accessed 13 Aug 2014Google Scholar
  8. 8.
    Sigurdsson EM. Immune therapy for AD plaques and tangles. [Project period begin date 09/30/2001]. NIH, 1R01AG020197Google Scholar
  9. 9.
    Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM (2007) Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci 27(34):9115–9129CrossRefPubMedGoogle Scholar
  10. 10.
    Boutajangout A, Quartermain D, Sigurdsson EM (2010) Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J Neurosci 30(49):16559–16566CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Boutajangout A, Ingadottir J, Davies P, Sigurdsson EM (2011) Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J Neurochem 118(4):658–667CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Krishnamurthy PK, Deng Y, Sigurdsson EM (2011) Mechanistic studies of antibody-mediated clearance of tau aggregates using an ex vivo brain slice model. Front Psychiatry 2:59CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sigurdsson EM (2009) Tau-focused immunotherapy for Alzheimer’s disease and related tauopathies. Curr Alzheimer Res 6(5):446–450CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Congdon EE, Gu J, Sait HB, Sigurdsson EM (2013) Antibody uptake into neurons occurs primarily via clathrin-dependent Fcgamma receptor endocytosis and is a prerequisite for acute tau protein clearance. J Biol Chem 288(49):35452–35465CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284(19):12845–12852CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Clavaguera F, Bolmont T, Crowther RA et al (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11(7):909–913CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kim W, Lee S, Jung C, Ahmed A, Lee G, Hall GF (2010) Interneuronal transfer of human tau between Lamprey central neurons in situ. J Alzheimers Dis 19(2):647–664PubMedGoogle Scholar
  18. 18.
    Liu L, Drouet V, Wu JW et al (2012) Trans-synaptic spread of tau pathology in vivo. PLoS ONE 7(2):e31302CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kfoury N, Holmes BB, Jiang H, Holtzman DM, Diamond MI (2012) Trans-cellular propagation of tau aggregation by fibrillar species. J Biol Chem 287(23):19440–19451CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Santa-Maria I, Varghese M, Ksiezak-Reding H, Dzhun A, Wang J, Pasinetti GM (2012) Paired helical filaments from Alzheimer disease brain induce intracellular accumulation of tau protein in aggresomes. J Biol Chem 287(24):20522–20533CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wu JW, Herman M, Liu L et al (2013) Small misfolded tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J Biol Chem 288(3):1856–1870CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Masliah E, Rockenstein E, Adame A et al (2005) Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 46(6):857–868CrossRefPubMedGoogle Scholar
  23. 23.
    Tampellini D, Magrane J, Takahashi RH et al (2007) Internalized antibodies to the A beta domain of APP reduce neuronal A beta and protect against synaptic alterations. J Biol Chem 282(26):18895–18906CrossRefPubMedGoogle Scholar
  24. 24.
    Masliah E, Rockenstein E, Mante M et al (2011) Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS ONE 6(4), e19338CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Urushitani M, Ezzi SA, Julien JP (2007) Therapeutic effects of immunization with mutant superoxide dismutase in mice models of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 104(7):2495–2500CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Boimel M, Grigoriadis N, Lourbopoulos A, Haber E, Abramsky O, Rosenmann H (2010) Efficacy and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice. Exp Neurol 224(2):472–485CrossRefPubMedGoogle Scholar
  27. 27.
    Chai X, Wu S, Murray TK et al (2011) Passive immunization with anti-tau antibodies in two transgenic models: reduction of tau pathology and delay of disease progression. J Biol Chem 286(39):34457–34467CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bi M, Ittner A, Ke YD, Gotz J, Ittner LM (2011) Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice. PLoS One 6(12):e26860CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Troquier L, Caillierez M, Burnouf S et al (2012) Targeting phospho-Ser422 by active tau immunotherapy in the THY-Tau22 mouse model: a suitable therapeutic approach. Curr Alzheimer Res 9(4):397–405CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    d’Abramo C, Acker CM, Jimenez HT, Davies P (2013) Tau passive immunotherapy in mutant P301L mice: antibody affinity versus specificity. PLoS ONE 8(4):e62402CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Theunis C, Crespo-Biel N, Gafner V et al (2013) Efficacy and safety of a liposome-based vaccine against protein tau, assessed in Tau.P301L mice that model tauopathy. PLoS One 8(8):e72301CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Yanamandra K, Kfoury N, Jiang H et al (2013) Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron 80(2):402–414CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gu J, Congdon EE, Sigurdsson EM (2013) Two novel tau antibodies targeting the 396/404 region are primarily taken up by neurons and reduce tau protein pathology. J Biol Chem 288(46):33081–33095CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Castillo-Carranza DL, Gerson JE, Sengupta U, Guerrero-Munoz MJ, Lasagna-Reeves CA, Kayed R (2014) Specific targeting of tau oligomers in hTau mice prevents cognitive impairment and tau toxicity following injection with brain-derived tau oligomeric seeds. J Alzheimers Dis 40:S97–S111PubMedGoogle Scholar
  35. 35.
    Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ et al (2014) Passive immunization with tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J Neurosci 34(12):4260–4272CrossRefPubMedGoogle Scholar
  36. 36.
    Walls KC, Ager RR, Vasilevko V, Cheng D, Medeiros R, LaFerla FM (2014) p-Tau immunotherapy reduces soluble and insoluble tau in aged 3xTg-AD mice. Neurosci Lett 575:96–100CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Collin L, Bohrmann B, Gopfert U, Oroszlan-Szovik K, Ozmen L, Gruninger F (2014) Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer’s disease. Brain 137(Pt 10):2834–2846CrossRefPubMedGoogle Scholar
  38. 38.
    Kontsekova E, Zilka N, Kovacech B, Novak P, Novak M (2014) First-in-man tau vaccine targeting structural determinants essential for pathological tau-tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer’s disease model. Alzheimers Res Ther 6(4):44CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Selenica ML, Davtyan H, Housley SB et al (2014) Epitope analysis following active immunization with tau proteins reveals immunogens implicated in tau pathogenesis. J Neuroinflammation 11:152CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bright J, Hussain S, Dang V et al (2015) Human secreted tau increases amyloid-beta production. Neurobiol Aging 36(2):693–709CrossRefPubMedGoogle Scholar
  41. 41.
    Umeda T, Eguchi H, Kunori Y et al (2015) Passive immunotherapy of tauopathy targeting pSer413-tau: a pilot study in mice. Ann Clin Transl Neurol 2(3):241–255CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sankaranarayanan S, Barten DM, Vana L et al (2015) Passive immunization with phospho-tau antibodies reduces tau pathology and functional deficits in two distinct mouse tauopathy models. PLoS One 10(5):e0125614CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kondo A, Shahpasand K, Mannix R et al (2015) Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature 523(7561):431–436CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Yanamandra K, Jiang H, Mahan TE et al (2015) Anti-tau antibody reduces insoluble tau and decreases brain atrophy. Ann Clin Transl Neurol 2(3):278–288CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Funk KE, Mirbaha H, Jiang H, Holtzman DM, Diamond MI (2015) Distinct therapeutic mechanisms of tau antibodies: promoting microglial clearance vs. blocking neuronal uptake. J Biol Chem 290(35):21652–62CrossRefPubMedGoogle Scholar
  46. 46.
    d’Abramo C, Acker CM, Jimenez H, Davies P (2015) Passive immunization in JNPL3 transgenic mice using an array of phospho-tau specific antibodies. PLoS One 10(8):e0135774CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ittner A, Bertz J, Suh LS, Stevens CH, Gotz J, Ittner LM (2015) Tau-targeting passive immunization modulates aspects of pathology in tau transgenic mice. J Neurochem 132(1):135–145CrossRefPubMedGoogle Scholar
  48. 48.
    Bumbaca D, Boswell CA, Fielder PJ, Khawli LA (2012) Physiochemical and biochemical factors influencing the pharmacokinetics of antibody therapeutics. AAPS J 14(3):554–558CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sigurdsson EM (2008) Immunotherapy targeting pathological tau protein in Alzheimer’s disease and related tauopathies. J Alzheimers Dis 15:157–168PubMedPubMedCentralGoogle Scholar
  50. 50.
    Pfeifer M, Boncristiano S, Bondolfi L et al (2002) Cerebral hemorrhage after passive anti-Abeta immunotherapy. Science 298(5597):1379CrossRefPubMedGoogle Scholar
  51. 51.
    Morgan D (2009) The role of microglia in antibody-mediated clearance of amyloid-beta from the brain. CNS Neurol Disord Drug Targets 8(1):7–15Google Scholar
  52. 52.
    Chai X, Dage JL, Citron M (2012) Constitutive secretion of tau protein by an unconventional mechanism. Neurobiol Dis 48(3):356–366CrossRefPubMedGoogle Scholar
  53. 53.
    Shi Y, Kirwan P, Smith J, MacLean G, Orkin SH, Livesey FJ (2012) A human stem cell model of early Alzheimer’s disease pathology in Down syndrome. Sci Transl Med 4(124):124ra29PubMedPubMedCentralGoogle Scholar
  54. 54.
    Saman S, Kim W, Raya M et al (2012) Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J Biol Chem 287(6):3842–3849CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Simon D, Garcia-Garcia E, Royo F, Falcon-Perez JM, Avila J (2012) Proteostasis of tau. Tau overexpression results in its secretion via membrane vesicles. FEBS Lett 586(1):47–54CrossRefPubMedGoogle Scholar
  56. 56.
    Yamada K, Cirrito JR, Stewart FR et al (2011) In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice. J Neurosci 31(37):13110–13117CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Plouffe V, Mohamed NV, Rivest-McGraw J, Bertrand J, Lauzon M, Leclerc N (2012) Hyperphosphorylation and cleavage at D421 enhance tau secretion. PLoS One 7(5):e36873CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Karch CM, Jeng AT, Goate AM (2012) Extracellular tau levels are influenced by variability in tau that is associated with tauopathies. J Biol Chem 287(51):42751–42762CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Pooler AM, Phillips EC, Lau DH, Noble W, Hanger DP (2013) Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep 14(4):389–394CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Medina M, Avila J (2014) The role of extracellular tau in the spreading of neurofibrillary pathology. Front Cell Neurosci 8:113PubMedPubMedCentralGoogle Scholar
  61. 61.
    Rosenmann H, Grigoriadis N, Karussis D et al (2006) Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein. Arch Neurol 63(10):1459–1467CrossRefPubMedGoogle Scholar
  62. 62.
    Rozenstein-Tsalkovich L, Grigoriadis N, Lourbopoulos A et al (2013) Repeated immunization of mice with phosphorylated-tau peptides causes neuroinflammation. Exp Neurol 248:451–456CrossRefPubMedGoogle Scholar
  63. 63.
    Mably AJ, Kanmert D, Mc Donald JM et al (2015) Tau immunization: a cautionary tale? Neurobiol Aging 36(3):1316–1332CrossRefPubMedGoogle Scholar
  64. 64.
    Harada A, Oguchi K, Okabe S et al (1994) Altered microtubule organization in small-caliber axons of mice lacking tau-protein. Nature 369(6480):488–491CrossRefPubMedGoogle Scholar
  65. 65.
    Dawson HN, Ferreira A, Eyster MV, Ghoshal N, Binder LI, Vitek MP (2001) Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J Cell Sci 114(6):1179–1187PubMedGoogle Scholar
  66. 66.
    Tucker KL, Meyer M, Barde YA (2001) Neurotrophins are required for nerve growth during development. Nat Neurosci 4(1):29–37CrossRefPubMedGoogle Scholar
  67. 67.
    Fujio K, Sato M, Uemura T, Sato T, Sato-Harada R, Harada A (2007) 14-3-3 proteins and protein phosphatases are not reduced in tau-deficient mice. Neuroreport 18(10):1049–1052CrossRefPubMedGoogle Scholar
  68. 68.
    Ikegami S, Harada A, Hirokawa N (2000) Muscle weakness, hyperactivity, and impairment in fear conditioning in tau-deficient mice. Neurosci Lett 279(3):129–132CrossRefPubMedGoogle Scholar
  69. 69.
    Lei P, Ayton S, Finkelstein DI et al (2012) Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat Med 18(2):291–295CrossRefPubMedGoogle Scholar
  70. 70.
    Ke YD, Suchowerska AK, van der Hoven J et al (2012) Lessons from tau-deficient mice. Int J Alzheimers Dis 2012:873270PubMedPubMedCentralGoogle Scholar
  71. 71.
    Rapoport M, Dawson HN, Binder LI, Vitek MP, Ferreira A (2002) Tau is essential to beta-amyloid-induced neurotoxicity. Proc Natl Acad Sci U S A 99(9):6364–6369CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Roberson ED, Scearce-Levie K, Palop JJ et al (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316(5825):750–754CrossRefPubMedGoogle Scholar
  73. 73.
    Ittner LM, Ke YD, Delerue F et al (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142(3):387–397CrossRefPubMedGoogle Scholar
  74. 74.
    Congdon EE, Krishnaswamy S, Sigurdsson EM (2014) Harnessing the immune system for treatment and detection of tau pathology. J Alzheimers Dis 40:S113–S121PubMedPubMedCentralGoogle Scholar
  75. 75.
    Krishnaswamy S, Lin Y, Rajamohamedsait WJ, Rajamohamedsait HB, Krishnamurthy P, Sigurdsson EM (2014) Antibody-derived in vivo imaging of tau pathology. J Neurosci 34(50):16835–16850CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Axon Neuroscience SE (2015) NCT01850238: safety study of AADvac1, a tau peptide-KLH-conjugate active vaccine to treat Alzheimer’s disease. ClinicalTrials.govGoogle Scholar
  77. 77.
    Bristol-Meyers Squibb (2015) NCT02294851: a randomized, double-blind, placebo-controlled, single ascending dose study of intravenously administered BMS-986168 in healthy subjects. ClinicalTrials.govGoogle Scholar
  78. 78.
    Bristol-Meyers Squibb (2015) NCT02460094: Multiple ascending dose study of intravenously administered BMS-986168 in patients with progressive supranuclear palsy (CN002-003). ClinicalTrials.govGoogle Scholar
  79. 79.
    Hoffmann-La-Roche (2015) NCT02281786: a study of RO6926496 in healthy volunteers. ClinicalTrials.govGoogle Scholar
  80. 80.
    C2N Diagnostics - Abbvie (2015) NCT02494024: safety, tolerability and pharmacokinetics of C2N-8E12 in subjects with progressive supranuclear palsy. ClinicalTrials.govGoogle Scholar
  81. 81.
    Pedersen JT, Sigurdsson EM (2015) Tau immunotherapy for Alzheimer’s disease. Trends Mol Med 21(6):394–402CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Neuroscience and PhysiologyNew York University School of MedicineNew YorkUSA
  2. 2.Department of PsychiatryNew York University School of MedicineNew YorkUSA

Personalised recommendations