Advertisement

Immunotherapy of Parkinson’s Disease

  • Achim SchneebergerEmail author
  • Suzanne Hendrix
  • Markus Mandler
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disorder. It elicits a broad range of debilitating motor and as well as non-motor symptoms, both of which can lead to serious disability. There is currently no available agent with disease modifying properties. Immunotherapy is increasingly being investigated as a disease modifying treatment for PD based on our improved understanding of the pathophysiology of the disease. Current evidence points to a causal role of misfolded alpha-synuclein (α-syn) in the development and progression of PD and it has therefore become a primary focus for immunotherapy. Today, two principal approaches are being pursued: active and passive immunization. This chapter first addresses progress in active and passive immunotherapeutic approaches targeting α-syn for Parkinson’s disease in animal models. We then discuss clinical progress of α-syn immunotherapy including ongoing clinical trials. Finally, we address challenges and future perspectives for PD immunotherapy.

Key words

Alpha-synuclein Parkinson’s disease Synucleinopathy Clinical trial AFFITOPE® Passive immunotherapy Vaccination 

Abbreviations

α-syn

Alpha-synuclein

β-syn

Beta-synuclein

DA

Dopamine

DLB

Dementia with Lewy bodies

DOPAC

3,4-Dihydroxyphenylacetic acid

GCI

Glial cytoplasmatic inclusions

h

Human

HVA

Homovanillic acid

LB

Lewy body

mAb

Monoclonal antibody

MSA

Multiple system atrophy

PD

Parkinson’s disease

PDD

Parkinson’s disease dementia

REM

Rapid eye movement

MWM

Morris water maze

References

  1. 1.
    Davie CA (2008) A review of Parkinson’s disease. Br Med Bull 86:109–127CrossRefPubMedGoogle Scholar
  2. 2.
    Meissner WG, Frasier M, Gasser T et al (2011) Priorities in Parkinson’s disease research. Nat Rev Drug Discov 10(5):377–393CrossRefPubMedGoogle Scholar
  3. 3.
    Parkinson J (2002) An essay on the shaking palsy. 1817. J Neuropsychiatry Clin Neurosci 14(2):223–236, discussion 222CrossRefPubMedGoogle Scholar
  4. 4.
    Dubois B, Tolosa E, Katzenschlager R et al (2012) Donepezil in Parkinson’s disease dementia: a randomized, double-blind efficacy and safety study. Mov Disord 27(10):1230–1238CrossRefPubMedGoogle Scholar
  5. 5.
    Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909CrossRefPubMedGoogle Scholar
  6. 6.
    Spillantini MG, Schmidt ML, Lee VM et al (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840CrossRefPubMedGoogle Scholar
  7. 7.
    Kosaka K (1978) Lewy bodies in cerebral cortex, report of three cases. Acta Neuropathol 42(2):127–134CrossRefPubMedGoogle Scholar
  8. 8.
    Jellinger KA (2009) A critical evaluation of current staging of alpha-synuclein pathology in Lewy body disorders. Biochim Biophys Acta 1792(7):730–740CrossRefPubMedGoogle Scholar
  9. 9.
    McGeer PL, McGeer EG (2008) The alpha-synuclein burden hypothesis of Parkinson disease and its relationship to Alzheimer disease. Exp Neurol 212(2):235–238CrossRefPubMedGoogle Scholar
  10. 10.
    Iwai A, Masliah E, Yoshimoto M et al (1995) The precursor protein of non-a beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14(2):467–475CrossRefPubMedGoogle Scholar
  11. 11.
    Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8(8):2804–2815PubMedGoogle Scholar
  12. 12.
    Ueda K, Fukushima H, Masliah E et al (1993) Molecular cloning of CDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci U S A 90(23):11282–11286CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fortin DL, Troyer MD, Nakamura K et al (2004) Lipid rafts mediate the synaptic localization of alpha-synuclein. J Neurosci 24(30):6715–6723CrossRefPubMedGoogle Scholar
  14. 14.
    George JM, Jin H, Woods WS et al (1995) Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15(2):361–372CrossRefPubMedGoogle Scholar
  15. 15.
    Murphy DD, Rueter SM, Trojanowski JQ et al (2000) Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 20(9):3214–3220PubMedGoogle Scholar
  16. 16.
    Singleton AB, Farrer MJ, Bonifati V (2013) The genetics of Parkinson’s disease: progress and therapeutic implications. Mov Disord 28(1):14–23CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Edwards TL, Scott WK, Almonte C et al (2010) Genome-wide association study confirms SNPS in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann Hum Genet 74(2):97–109CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gandhi S, Wood NW (2010) Genome-wide association studies: the key to unlocking neurodegeneration? Nat Neurosci 13(7):789–794CrossRefPubMedGoogle Scholar
  19. 19.
    Satake W, Nakabayashi Y, Mizuta I et al (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 41(12):1303–1307CrossRefPubMedGoogle Scholar
  20. 20.
    Simon-Sanchez J, Schulte C, Bras JM et al (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41(12):1308–1312CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Singleton AB, Farrer M, Johnson J et al (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841CrossRefPubMedGoogle Scholar
  22. 22.
    McNeill A, Duran R, Hughes DA et al (2012) A clinical and family history study of Parkinson’s disease in heterozygous glucocerebrosidase mutation carriers. J Neurol Neurosurg Psychiatry 83(8):853–854CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Danzer KM, Haasen D, Karow AR et al (2007) Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci 27(34):9220–9232CrossRefPubMedGoogle Scholar
  24. 24.
    Eriksen JL, Dawson TM, Dickson DW et al (2003) Caught in the act: alpha-synuclein is the culprit in Parkinson’s disease. Neuron 40(3):453–456CrossRefPubMedGoogle Scholar
  25. 25.
    Savitt JM, Dawson VL, Dawson TM (2006) Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest 116(7):1744–1754CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Winner B, Jappelli R, Maji SK et al (2011) In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A 108(10):4194–4199CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Giasson BI, Duda JE, Murray IV et al (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290(5493):985–989CrossRefPubMedGoogle Scholar
  28. 28.
    Hunot S, Boissiere F, Faucheux B et al (1996) Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72(2):355–363CrossRefPubMedGoogle Scholar
  29. 29.
    Wu DC, Teismann P, Tieu K et al (2003) Nadph oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci U S A 100(10):6145–6150CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14(7):463–477CrossRefPubMedGoogle Scholar
  31. 31.
    Shavali S, Combs CK, Ebadi M (2006) Reactive macrophages increase oxidative stress and alpha-synuclein nitration during death of dopaminergic neuronal cells in co-culture: relevance to Parkinson’s disease. Neurochem Res 31(1):85–94CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang W, Wang T, Pei Z et al (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 19(6):533–542CrossRefPubMedGoogle Scholar
  33. 33.
    Braak H, Del Tredici K, Rub U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211CrossRefPubMedGoogle Scholar
  34. 34.
    Dickson DW, Fujishiro H, Orr C et al (2009) Neuropathology of non-motor features of Parkinson disease. Parkinsonism Relat Disord 15(Suppl 3):S1–S5CrossRefPubMedGoogle Scholar
  35. 35.
    Lansbury PT Jr, Brice A (2002) Genetics of Parkinson’s disease and biochemical studies of implicated gene products. Curr Opin Genet Dev 12(3):299–306CrossRefPubMedGoogle Scholar
  36. 36.
    Sacchetti B, Baldi E, Lorenzini CA et al (2002) Cerebellar role in fear-conditioning consolidation. Proc Natl Acad Sci U S A 99(12):8406–8411CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047CrossRefPubMedGoogle Scholar
  38. 38.
    Ross OA, Braithwaite AT, Skipper LM et al (2008) Genomic investigation of alpha-synuclein multiplication and Parkinsonism. Ann Neurol 63(6):743–750CrossRefPubMedGoogle Scholar
  39. 39.
    Fleming SM, Salcedo J, Fernagut PO et al (2004) Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein. J Neurosci 24(42):9434–9440CrossRefPubMedGoogle Scholar
  40. 40.
    Fleming SM, Tetreault NA, Mulligan CK et al (2008) Olfactory deficits in mice overexpressing human wildtype alpha-synuclein. Eur J Neurosci 28(2):247–256CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lotharius J, Brundin P (2002) Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 3(12):932–942CrossRefPubMedGoogle Scholar
  42. 42.
    Masliah E, Rockenstein E, Veinbergs I et al (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287(5456):1265–1269CrossRefPubMedGoogle Scholar
  43. 43.
    Rockenstein E, Crews L, Masliah E (2007) Transgenic animal models of neurodegenerative diseases and their application to treatment development. Adv Drug Deliv Rev 59(11):1093–1102CrossRefPubMedGoogle Scholar
  44. 44.
    Lace G, Savva GM, Forster G et al (2009) Hippocampal tau pathology is related to neuroanatomical connections: an ageing population-based study. Brain 132(Pt 5):1324–1334CrossRefPubMedGoogle Scholar
  45. 45.
    Jellinger KA, Kovacs GG (2011) Clinico-pathological correlations in neurodegeneration. Acta Neuropathol 122(2):115–116CrossRefPubMedGoogle Scholar
  46. 46.
    Lim KL, Zhang CW (2013) Molecular events underlying Parkinson’s disease – an interwoven tapestry. Front Neurol 4:33CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Olanow CW, Brundin P (2013) Parkinson’s disease and alpha synuclein: is Parkinson’s disease a prion-like disorder? Mov Disord 28(1):31–40CrossRefPubMedGoogle Scholar
  48. 48.
    Kordower JH, Chu Y, Hauser RA et al (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14(5):504–506CrossRefPubMedGoogle Scholar
  49. 49.
    Li JY, Englund E, Holton JL et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14(5):501–503CrossRefPubMedGoogle Scholar
  50. 50.
    Volpicelli-Daley LA, Luk KC, Patel TP et al (2011) Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72(1):57–71CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Luk CH, Wallis JD (2009) Dynamic encoding of responses and outcomes by neurons in medial prefrontal cortex. J Neurosci 29(23):7526–7539CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Luk KC, Kehm V, Carroll J et al (2012) Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338(6109):949–953CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Watts JC, Giles K, Oehler A et al (2013) Transmission of multiple system atrophy prions to transgenic mice. Proc Natl Acad Sci U S A 110(48):19555–19560CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Recasens A, Dehay B, Bove J et al (2014) Lewy body extracts from parkinson disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol 75(3):351–362CrossRefPubMedGoogle Scholar
  55. 55.
    Winblad B, Andreasen N, Minthon L et al (2012) Safety, tolerability, and antibody response of active abeta immunotherapy with cad106 in patients with Alzheimer’s disease: randomised, double-blind, placebo-controlled, first-in-human study. Lancet Neurol 11(7):597–604CrossRefPubMedGoogle Scholar
  56. 56.
    Doody RS, Thomas RG, Farlow M et al (2014) Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):311–321CrossRefPubMedGoogle Scholar
  57. 57.
    Salloway S, Sperling R, Fox NC et al (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):322–333CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Bae EJ, Lee HJ, Rockenstein E et al (2012) Antibody-aided clearance of extracellular alpha-synuclein prevents cell-to-cell aggregate transmission. J Neurosci 32(39):13454–13469CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Games D, Valera E, Spencer B et al (2014) Reducing c-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. J Neurosci 34(28):9441–9454CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Ghochikyan A, Petrushina I, Davtyan H et al (2014) Immunogenicity of epitope vaccines targeting different b cell antigenic determinants of human alpha-synuclein: feasibility study. Neurosci Lett 560:86–91CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Lindstrom V, Fagerqvist T, Nordstrom E et al (2014) Immunotherapy targeting alpha-synuclein protofibrils reduced pathology in (thy-1)-h[a30p] alpha-synuclein mice. Neurobiol Dis 69:134–143CrossRefPubMedGoogle Scholar
  62. 62.
    Mandler M, Valera E, Rockenstein E et al (2014) Next-generation active immunization approach for synucleinopathies: implications for Parkinson’s disease clinical trials. Acta Neuropathol 127(6):861–879CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Masliah E, Rockenstein E, Adame A et al (2005) Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 46(6):857–868CrossRefPubMedGoogle Scholar
  64. 64.
    Masliah E, Rockenstein E, Mante M et al (2011) Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS One 6(4):e19338CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Nasstrom T, Goncalves S, Sahlin C et al (2011) Antibodies against alpha-synuclein reduce oligomerization in living cells. PLoS One 6(10):e27230CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Wilcock DM, Colton CA (2008) Anti-amyloid-beta immunotherapy in Alzheimer’s disease: relevance of transgenic mouse studies to clinical trials. J Alzheimers Dis 15(4):555–569PubMedPubMedCentralGoogle Scholar
  67. 67.
    Menendez-Gonzalez M, Perez-Pinera P, Martinez-Rivera M et al (2011) Immunotherapy for Alzheimer’s disease: rational basis in ongoing clinical trials. Curr Pharm Des 17(5):508–520CrossRefPubMedGoogle Scholar
  68. 68.
    Benner EJ, Banerjee R, Reynolds AD et al (2008) Nitrated alpha-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS One 3(1), e1376CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Reynolds AD, Stone DK, Hutter JA et al (2010) Regulatory t cells attenuate th17 cell-mediated nigrostriatal dopaminergic neurodegeneration in a model of Parkinson’s disease. J Immunol 184(5):2261–2271CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Sanchez-Guajardo V, Barnum CJ, Tansey MG et al (2013) Neuroimmunological processes in Parkinson’s disease and their relation to alpha-synuclein: microglia as the referee between neuronal processes and peripheral immunity. ASN Neuro 5(2):113–139CrossRefPubMedGoogle Scholar
  71. 71.
    Reynolds AD, Stone DK, Mosley RL et al (2009) Nitrated {alpha}-synuclein-induced alterations in microglial immunity are regulated by cd4+ t cell subsets. J Immunol 182(7):4137–4149CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Sanchez-Guajardo V, Annibali A, Jensen PH et al (2013) Alpha-synuclein vaccination prevents the accumulation of Parkinson disease-like pathologic inclusions in striatum in association with regulatory t cell recruitment in a rat model. J Neuropathol Exp Neurol 72(7):624–645CrossRefPubMedGoogle Scholar
  73. 73.
    Wiessner C, Wiederhold KH, Tissot AC et al (2011) The second-generation active abeta immunotherapy cad106 reduces amyloid accumulation in app transgenic mice while minimizing potential side effects. J Neurosci 31(25):9323–9331CrossRefPubMedGoogle Scholar
  74. 74.
    Schneeberger A, Mandler M, Mattner F et al (2010) Affitome(r) technology in neurodegenerative diseases: the doubling advantage. Hum Vaccin 6(11):948–952CrossRefPubMedGoogle Scholar
  75. 75.
    Schneeberger A, Mandler M, Mattner F et al (2012) Vaccination for Parkinson’s disease. Parkinsonism Relat Disord 18(Suppl 1):S11–S13CrossRefPubMedGoogle Scholar
  76. 76.
    Abeliovich A, Schmitz Y, Farinas I et al (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25(1):239–252CrossRefPubMedGoogle Scholar
  77. 77.
    Hashimoto M, Rockenstein E, Mante M et al (2001) Beta-synuclein inhibits alpha-synuclein aggregation: a possible role as an anti-parkinsonian factor. Neuron 32(2):213–223CrossRefPubMedGoogle Scholar
  78. 78.
    Hashimoto M, Kawahara K, Bar-On P et al (2004) The role of alpha-synuclein assembly and metabolism in the pathogenesis of Lewy body disease. J Mol Neurosci 24(3):343–352CrossRefPubMedGoogle Scholar
  79. 79.
    Biere AL, Wood SJ, Wypych J et al (2000) Parkinson’s disease-associated alpha-synuclein is more fibrillogenic than beta- and gamma-synuclein and cannot cross-seed its homologs. J Biol Chem 275(44):34574–34579CrossRefPubMedGoogle Scholar
  80. 80.
    Fan Y, Limprasert P, Murray IV et al (2006) Beta-synuclein modulates alpha-synuclein neurotoxicity by reducing alpha-synuclein protein expression. Hum Mol Genet 15(20):3002–3011CrossRefPubMedGoogle Scholar
  81. 81.
    Lee HJ, Khoshaghideh F, Patel S et al (2004) Clearance of alpha-synuclein oligomeric intermediates via the lysosomal degradation pathway. J Neurosci 24(8):1888–1896CrossRefPubMedGoogle Scholar
  82. 82.
    Tran HT, Chung CH, Iba M et al (2014) Alpha-synuclein immunotherapy blocks uptake and templated propagation of misfolded alpha-synuclein and neurodegeneration. Cell Rep 7(6):2054–2065CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Fagerqvist T, Lindstrom V, Nordstrom E et al (2013) Monoclonal antibodies selective for alpha-synuclein oligomers/protofibrils recognize brain pathology in Lewy body disorders and alpha-synuclein transgenic mice with the disease-causing a30p mutation. J Neurochem 126(1):131–144CrossRefPubMedGoogle Scholar
  84. 84.
    Lindstrom V, Ihse E, Fagerqvist T et al (2014) Immunotherapy targeting alpha-synuclein, with relevance for future treatment of Parkinson’s disease and other Lewy body disorders. Immunotherapy 6(2):141–153CrossRefPubMedGoogle Scholar
  85. 85.
    Leber P (1997) Slowing the progression of Alzheimer disease: methodologic issues. Alzheimer Dis Assoc Disord 11(Suppl 5):S10–S21, Discussion S37-19PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Achim Schneeberger
    • 1
    Email author
  • Suzanne Hendrix
    • 2
  • Markus Mandler
    • 1
  1. 1.AFFiRiS AGViennaAustria
  2. 2.Pentara CorporationSalt Lake CityUSA

Personalised recommendations