Immunotherapy of Parkinson’s Disease

  • Achim SchneebergerEmail author
  • Suzanne Hendrix
  • Markus Mandler
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Parkinson’s disease (PD) is the second most common neurodegenerative disorder. It elicits a broad range of debilitating motor and as well as non-motor symptoms, both of which can lead to serious disability. There is currently no available agent with disease modifying properties. Immunotherapy is increasingly being investigated as a disease modifying treatment for PD based on our improved understanding of the pathophysiology of the disease. Current evidence points to a causal role of misfolded alpha-synuclein (α-syn) in the development and progression of PD and it has therefore become a primary focus for immunotherapy. Today, two principal approaches are being pursued: active and passive immunization. This chapter first addresses progress in active and passive immunotherapeutic approaches targeting α-syn for Parkinson’s disease in animal models. We then discuss clinical progress of α-syn immunotherapy including ongoing clinical trials. Finally, we address challenges and future perspectives for PD immunotherapy.

Key words

Alpha-synuclein Parkinson’s disease Synucleinopathy Clinical trial AFFITOPE® Passive immunotherapy Vaccination 









Dementia with Lewy bodies


3,4-Dihydroxyphenylacetic acid


Glial cytoplasmatic inclusions




Homovanillic acid


Lewy body


Monoclonal antibody


Multiple system atrophy


Parkinson’s disease


Parkinson’s disease dementia


Rapid eye movement


Morris water maze


  1. 1.
    Davie CA (2008) A review of Parkinson’s disease. Br Med Bull 86:109–127CrossRefPubMedGoogle Scholar
  2. 2.
    Meissner WG, Frasier M, Gasser T et al (2011) Priorities in Parkinson’s disease research. Nat Rev Drug Discov 10(5):377–393CrossRefPubMedGoogle Scholar
  3. 3.
    Parkinson J (2002) An essay on the shaking palsy. 1817. J Neuropsychiatry Clin Neurosci 14(2):223–236, discussion 222CrossRefPubMedGoogle Scholar
  4. 4.
    Dubois B, Tolosa E, Katzenschlager R et al (2012) Donepezil in Parkinson’s disease dementia: a randomized, double-blind efficacy and safety study. Mov Disord 27(10):1230–1238CrossRefPubMedGoogle Scholar
  5. 5.
    Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909CrossRefPubMedGoogle Scholar
  6. 6.
    Spillantini MG, Schmidt ML, Lee VM et al (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840CrossRefPubMedGoogle Scholar
  7. 7.
    Kosaka K (1978) Lewy bodies in cerebral cortex, report of three cases. Acta Neuropathol 42(2):127–134CrossRefPubMedGoogle Scholar
  8. 8.
    Jellinger KA (2009) A critical evaluation of current staging of alpha-synuclein pathology in Lewy body disorders. Biochim Biophys Acta 1792(7):730–740CrossRefPubMedGoogle Scholar
  9. 9.
    McGeer PL, McGeer EG (2008) The alpha-synuclein burden hypothesis of Parkinson disease and its relationship to Alzheimer disease. Exp Neurol 212(2):235–238CrossRefPubMedGoogle Scholar
  10. 10.
    Iwai A, Masliah E, Yoshimoto M et al (1995) The precursor protein of non-a beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14(2):467–475CrossRefPubMedGoogle Scholar
  11. 11.
    Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8(8):2804–2815PubMedGoogle Scholar
  12. 12.
    Ueda K, Fukushima H, Masliah E et al (1993) Molecular cloning of CDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci U S A 90(23):11282–11286CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fortin DL, Troyer MD, Nakamura K et al (2004) Lipid rafts mediate the synaptic localization of alpha-synuclein. J Neurosci 24(30):6715–6723CrossRefPubMedGoogle Scholar
  14. 14.
    George JM, Jin H, Woods WS et al (1995) Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15(2):361–372CrossRefPubMedGoogle Scholar
  15. 15.
    Murphy DD, Rueter SM, Trojanowski JQ et al (2000) Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 20(9):3214–3220PubMedGoogle Scholar
  16. 16.
    Singleton AB, Farrer MJ, Bonifati V (2013) The genetics of Parkinson’s disease: progress and therapeutic implications. Mov Disord 28(1):14–23CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Edwards TL, Scott WK, Almonte C et al (2010) Genome-wide association study confirms SNPS in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann Hum Genet 74(2):97–109CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gandhi S, Wood NW (2010) Genome-wide association studies: the key to unlocking neurodegeneration? Nat Neurosci 13(7):789–794CrossRefPubMedGoogle Scholar
  19. 19.
    Satake W, Nakabayashi Y, Mizuta I et al (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 41(12):1303–1307CrossRefPubMedGoogle Scholar
  20. 20.
    Simon-Sanchez J, Schulte C, Bras JM et al (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41(12):1308–1312CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Singleton AB, Farrer M, Johnson J et al (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841CrossRefPubMedGoogle Scholar
  22. 22.
    McNeill A, Duran R, Hughes DA et al (2012) A clinical and family history study of Parkinson’s disease in heterozygous glucocerebrosidase mutation carriers. J Neurol Neurosurg Psychiatry 83(8):853–854CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Danzer KM, Haasen D, Karow AR et al (2007) Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci 27(34):9220–9232CrossRefPubMedGoogle Scholar
  24. 24.
    Eriksen JL, Dawson TM, Dickson DW et al (2003) Caught in the act: alpha-synuclein is the culprit in Parkinson’s disease. Neuron 40(3):453–456CrossRefPubMedGoogle Scholar
  25. 25.
    Savitt JM, Dawson VL, Dawson TM (2006) Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest 116(7):1744–1754CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Winner B, Jappelli R, Maji SK et al (2011) In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A 108(10):4194–4199CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Giasson BI, Duda JE, Murray IV et al (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290(5493):985–989CrossRefPubMedGoogle Scholar
  28. 28.
    Hunot S, Boissiere F, Faucheux B et al (1996) Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72(2):355–363CrossRefPubMedGoogle Scholar
  29. 29.
    Wu DC, Teismann P, Tieu K et al (2003) Nadph oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci U S A 100(10):6145–6150CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14(7):463–477CrossRefPubMedGoogle Scholar
  31. 31.
    Shavali S, Combs CK, Ebadi M (2006) Reactive macrophages increase oxidative stress and alpha-synuclein nitration during death of dopaminergic neuronal cells in co-culture: relevance to Parkinson’s disease. Neurochem Res 31(1):85–94CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang W, Wang T, Pei Z et al (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 19(6):533–542CrossRefPubMedGoogle Scholar
  33. 33.
    Braak H, Del Tredici K, Rub U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211CrossRefPubMedGoogle Scholar
  34. 34.
    Dickson DW, Fujishiro H, Orr C et al (2009) Neuropathology of non-motor features of Parkinson disease. Parkinsonism Relat Disord 15(Suppl 3):S1–S5CrossRefPubMedGoogle Scholar
  35. 35.
    Lansbury PT Jr, Brice A (2002) Genetics of Parkinson’s disease and biochemical studies of implicated gene products. Curr Opin Genet Dev 12(3):299–306CrossRefPubMedGoogle Scholar
  36. 36.
    Sacchetti B, Baldi E, Lorenzini CA et al (2002) Cerebellar role in fear-conditioning consolidation. Proc Natl Acad Sci U S A 99(12):8406–8411CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047CrossRefPubMedGoogle Scholar
  38. 38.
    Ross OA, Braithwaite AT, Skipper LM et al (2008) Genomic investigation of alpha-synuclein multiplication and Parkinsonism. Ann Neurol 63(6):743–750CrossRefPubMedGoogle Scholar
  39. 39.
    Fleming SM, Salcedo J, Fernagut PO et al (2004) Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein. J Neurosci 24(42):9434–9440CrossRefPubMedGoogle Scholar
  40. 40.
    Fleming SM, Tetreault NA, Mulligan CK et al (2008) Olfactory deficits in mice overexpressing human wildtype alpha-synuclein. Eur J Neurosci 28(2):247–256CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lotharius J, Brundin P (2002) Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 3(12):932–942CrossRefPubMedGoogle Scholar
  42. 42.
    Masliah E, Rockenstein E, Veinbergs I et al (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287(5456):1265–1269CrossRefPubMedGoogle Scholar
  43. 43.
    Rockenstein E, Crews L, Masliah E (2007) Transgenic animal models of neurodegenerative diseases and their application to treatment development. Adv Drug Deliv Rev 59(11):1093–1102CrossRefPubMedGoogle Scholar
  44. 44.
    Lace G, Savva GM, Forster G et al (2009) Hippocampal tau pathology is related to neuroanatomical connections: an ageing population-based study. Brain 132(Pt 5):1324–1334CrossRefPubMedGoogle Scholar
  45. 45.
    Jellinger KA, Kovacs GG (2011) Clinico-pathological correlations in neurodegeneration. Acta Neuropathol 122(2):115–116CrossRefPubMedGoogle Scholar
  46. 46.
    Lim KL, Zhang CW (2013) Molecular events underlying Parkinson’s disease – an interwoven tapestry. Front Neurol 4:33CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Olanow CW, Brundin P (2013) Parkinson’s disease and alpha synuclein: is Parkinson’s disease a prion-like disorder? Mov Disord 28(1):31–40CrossRefPubMedGoogle Scholar
  48. 48.
    Kordower JH, Chu Y, Hauser RA et al (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14(5):504–506CrossRefPubMedGoogle Scholar
  49. 49.
    Li JY, Englund E, Holton JL et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14(5):501–503CrossRefPubMedGoogle Scholar
  50. 50.
    Volpicelli-Daley LA, Luk KC, Patel TP et al (2011) Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72(1):57–71CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Luk CH, Wallis JD (2009) Dynamic encoding of responses and outcomes by neurons in medial prefrontal cortex. J Neurosci 29(23):7526–7539CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Luk KC, Kehm V, Carroll J et al (2012) Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338(6109):949–953CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Watts JC, Giles K, Oehler A et al (2013) Transmission of multiple system atrophy prions to transgenic mice. Proc Natl Acad Sci U S A 110(48):19555–19560CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Recasens A, Dehay B, Bove J et al (2014) Lewy body extracts from parkinson disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol 75(3):351–362CrossRefPubMedGoogle Scholar
  55. 55.
    Winblad B, Andreasen N, Minthon L et al (2012) Safety, tolerability, and antibody response of active abeta immunotherapy with cad106 in patients with Alzheimer’s disease: randomised, double-blind, placebo-controlled, first-in-human study. Lancet Neurol 11(7):597–604CrossRefPubMedGoogle Scholar
  56. 56.
    Doody RS, Thomas RG, Farlow M et al (2014) Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):311–321CrossRefPubMedGoogle Scholar
  57. 57.
    Salloway S, Sperling R, Fox NC et al (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):322–333CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Bae EJ, Lee HJ, Rockenstein E et al (2012) Antibody-aided clearance of extracellular alpha-synuclein prevents cell-to-cell aggregate transmission. J Neurosci 32(39):13454–13469CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Games D, Valera E, Spencer B et al (2014) Reducing c-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. J Neurosci 34(28):9441–9454CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Ghochikyan A, Petrushina I, Davtyan H et al (2014) Immunogenicity of epitope vaccines targeting different b cell antigenic determinants of human alpha-synuclein: feasibility study. Neurosci Lett 560:86–91CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Lindstrom V, Fagerqvist T, Nordstrom E et al (2014) Immunotherapy targeting alpha-synuclein protofibrils reduced pathology in (thy-1)-h[a30p] alpha-synuclein mice. Neurobiol Dis 69:134–143CrossRefPubMedGoogle Scholar
  62. 62.
    Mandler M, Valera E, Rockenstein E et al (2014) Next-generation active immunization approach for synucleinopathies: implications for Parkinson’s disease clinical trials. Acta Neuropathol 127(6):861–879CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Masliah E, Rockenstein E, Adame A et al (2005) Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 46(6):857–868CrossRefPubMedGoogle Scholar
  64. 64.
    Masliah E, Rockenstein E, Mante M et al (2011) Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS One 6(4):e19338CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Nasstrom T, Goncalves S, Sahlin C et al (2011) Antibodies against alpha-synuclein reduce oligomerization in living cells. PLoS One 6(10):e27230CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Wilcock DM, Colton CA (2008) Anti-amyloid-beta immunotherapy in Alzheimer’s disease: relevance of transgenic mouse studies to clinical trials. J Alzheimers Dis 15(4):555–569PubMedPubMedCentralGoogle Scholar
  67. 67.
    Menendez-Gonzalez M, Perez-Pinera P, Martinez-Rivera M et al (2011) Immunotherapy for Alzheimer’s disease: rational basis in ongoing clinical trials. Curr Pharm Des 17(5):508–520CrossRefPubMedGoogle Scholar
  68. 68.
    Benner EJ, Banerjee R, Reynolds AD et al (2008) Nitrated alpha-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS One 3(1), e1376CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Reynolds AD, Stone DK, Hutter JA et al (2010) Regulatory t cells attenuate th17 cell-mediated nigrostriatal dopaminergic neurodegeneration in a model of Parkinson’s disease. J Immunol 184(5):2261–2271CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Sanchez-Guajardo V, Barnum CJ, Tansey MG et al (2013) Neuroimmunological processes in Parkinson’s disease and their relation to alpha-synuclein: microglia as the referee between neuronal processes and peripheral immunity. ASN Neuro 5(2):113–139CrossRefPubMedGoogle Scholar
  71. 71.
    Reynolds AD, Stone DK, Mosley RL et al (2009) Nitrated {alpha}-synuclein-induced alterations in microglial immunity are regulated by cd4+ t cell subsets. J Immunol 182(7):4137–4149CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Sanchez-Guajardo V, Annibali A, Jensen PH et al (2013) Alpha-synuclein vaccination prevents the accumulation of Parkinson disease-like pathologic inclusions in striatum in association with regulatory t cell recruitment in a rat model. J Neuropathol Exp Neurol 72(7):624–645CrossRefPubMedGoogle Scholar
  73. 73.
    Wiessner C, Wiederhold KH, Tissot AC et al (2011) The second-generation active abeta immunotherapy cad106 reduces amyloid accumulation in app transgenic mice while minimizing potential side effects. J Neurosci 31(25):9323–9331CrossRefPubMedGoogle Scholar
  74. 74.
    Schneeberger A, Mandler M, Mattner F et al (2010) Affitome(r) technology in neurodegenerative diseases: the doubling advantage. Hum Vaccin 6(11):948–952CrossRefPubMedGoogle Scholar
  75. 75.
    Schneeberger A, Mandler M, Mattner F et al (2012) Vaccination for Parkinson’s disease. Parkinsonism Relat Disord 18(Suppl 1):S11–S13CrossRefPubMedGoogle Scholar
  76. 76.
    Abeliovich A, Schmitz Y, Farinas I et al (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25(1):239–252CrossRefPubMedGoogle Scholar
  77. 77.
    Hashimoto M, Rockenstein E, Mante M et al (2001) Beta-synuclein inhibits alpha-synuclein aggregation: a possible role as an anti-parkinsonian factor. Neuron 32(2):213–223CrossRefPubMedGoogle Scholar
  78. 78.
    Hashimoto M, Kawahara K, Bar-On P et al (2004) The role of alpha-synuclein assembly and metabolism in the pathogenesis of Lewy body disease. J Mol Neurosci 24(3):343–352CrossRefPubMedGoogle Scholar
  79. 79.
    Biere AL, Wood SJ, Wypych J et al (2000) Parkinson’s disease-associated alpha-synuclein is more fibrillogenic than beta- and gamma-synuclein and cannot cross-seed its homologs. J Biol Chem 275(44):34574–34579CrossRefPubMedGoogle Scholar
  80. 80.
    Fan Y, Limprasert P, Murray IV et al (2006) Beta-synuclein modulates alpha-synuclein neurotoxicity by reducing alpha-synuclein protein expression. Hum Mol Genet 15(20):3002–3011CrossRefPubMedGoogle Scholar
  81. 81.
    Lee HJ, Khoshaghideh F, Patel S et al (2004) Clearance of alpha-synuclein oligomeric intermediates via the lysosomal degradation pathway. J Neurosci 24(8):1888–1896CrossRefPubMedGoogle Scholar
  82. 82.
    Tran HT, Chung CH, Iba M et al (2014) Alpha-synuclein immunotherapy blocks uptake and templated propagation of misfolded alpha-synuclein and neurodegeneration. Cell Rep 7(6):2054–2065CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Fagerqvist T, Lindstrom V, Nordstrom E et al (2013) Monoclonal antibodies selective for alpha-synuclein oligomers/protofibrils recognize brain pathology in Lewy body disorders and alpha-synuclein transgenic mice with the disease-causing a30p mutation. J Neurochem 126(1):131–144CrossRefPubMedGoogle Scholar
  84. 84.
    Lindstrom V, Ihse E, Fagerqvist T et al (2014) Immunotherapy targeting alpha-synuclein, with relevance for future treatment of Parkinson’s disease and other Lewy body disorders. Immunotherapy 6(2):141–153CrossRefPubMedGoogle Scholar
  85. 85.
    Leber P (1997) Slowing the progression of Alzheimer disease: methodologic issues. Alzheimer Dis Assoc Disord 11(Suppl 5):S10–S21, Discussion S37-19PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Achim Schneeberger
    • 1
    Email author
  • Suzanne Hendrix
    • 2
  • Markus Mandler
    • 1
  1. 1.AFFiRiS AGViennaAustria
  2. 2.Pentara CorporationSalt Lake CityUSA

Personalised recommendations