Advertisement

Extracellular α-Synuclein as a Target for Immunotherapy

  • Jun Sung Lee
  • Seung-Jae LeeEmail author
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Both genetic and pathological studies strongly suggest that α-synuclein is the main disease-causing molecule in Parkinson’s disease (PD). Moreover, a growing body of evidence suggests that α-synuclein, an intra-neuronal protein, is exocytosed from neurons and that extracellular α-synuclein could mediate the major pathological changes in PD, such as neurodegeneration, neuroinflammation, and progressive spreading of protein inclusions. Here, we review the mechanism(s) involved in generation and clearance of extracellular α-synuclein and their pathophysiological implications in neurodegeneration and neuroinflammation. We also discuss extracellular α-synuclein as a therapeutic target for immunotherapy.

Key words

Parkinson’s disease Lewy body Alpha-synuclein Protein aggregation Microglia Aggregate clearance Lysosome 

References

  1. 1.
    Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55:259–272CrossRefPubMedGoogle Scholar
  2. 2.
    Fahn S, Sulzer D (2004) Neurodegeneration and neuroprotection in Parkinson disease. NeuroRx 1:139–154CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ferrer I (2011) Neuropathology and neurochemistry of nonmotor symptoms in Parkinson’s disease. Parkinsons Dis 2011:708404PubMedPubMedCentralGoogle Scholar
  4. 4.
    Langston JW (2006) The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann Neurol 59:591–596CrossRefPubMedGoogle Scholar
  5. 5.
    Braak H, Del Tredici K (2008) Invited Article: Nervous system pathology in sporadic Parkinson disease. Neurology 70:1916–1925CrossRefPubMedGoogle Scholar
  6. 6.
    Braak H, de Vos RA, Bohl J et al (2006) Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 396:67–72CrossRefPubMedGoogle Scholar
  7. 7.
    Weinreb PH, Zhen W, Poon AW et al (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35:13709–13715CrossRefPubMedGoogle Scholar
  8. 8.
    Spillantini MG, Schmidt ML, Lee VM et al (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840CrossRefPubMedGoogle Scholar
  9. 9.
    Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047CrossRefPubMedGoogle Scholar
  10. 10.
    Kruger R, Kuhn W, Muller T et al (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18:106–108CrossRefPubMedGoogle Scholar
  11. 11.
    Zarranz JJ, Alegre J, Gomez-Esteban JC et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173CrossRefPubMedGoogle Scholar
  12. 12.
    Appel-Cresswell S, Vilarino-Guell C, Encarnacion M et al (2013) Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov Disord 28:811–813CrossRefPubMedGoogle Scholar
  13. 13.
    Lesage S, Anheim M, Letournel F et al (2013) G51D alpha-synuclein mutation causes a novel Parkinsonian-pyramidal syndrome. Ann Neurol 73:459–471CrossRefPubMedGoogle Scholar
  14. 14.
    Conway KA, Lee SJ, Rochet JC et al (2000) Accelerated oligomerization by Parkinson’s disease linked alpha-synuclein mutants. Ann N Y Acad Sci 920:42–45CrossRefPubMedGoogle Scholar
  15. 15.
    Greenbaum EA, Graves CL, Mishizen-Eberz AJ et al (2005) The E46K mutation in alpha-synuclein increases amyloid fibril formation. J Biol Chem 280:7800–7807CrossRefPubMedGoogle Scholar
  16. 16.
    Ghosh D, Mondal M, Mohite GM et al (2013) The Parkinson’s disease-associated H50Q mutation accelerates alpha-Synuclein aggregation in vitro. Biochemistry 52:6925–6927CrossRefPubMedGoogle Scholar
  17. 17.
    Singleton AB, Farrer M, Johnson J et al (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science 302:841CrossRefPubMedGoogle Scholar
  18. 18.
    Chartier-Harlin MC, Kachergus J, Roumier C et al (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364:1167–1169CrossRefPubMedGoogle Scholar
  19. 19.
    Ibanez P, Bonnet AM, Debarges B et al (2004) Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease. Lancet 364:1169–1171CrossRefPubMedGoogle Scholar
  20. 20.
    Ross OA, Braithwaite AT, Skipper LM et al (2008) Genomic investigation of alpha-synuclein multiplication and parkinsonism. Ann Neurol 63:743–750CrossRefPubMedGoogle Scholar
  21. 21.
    Farrer M, Kachergus J, Forno L et al (2004) Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications. Ann Neurol 55:174–179CrossRefPubMedGoogle Scholar
  22. 22.
    Miller DW, Hague SM, Clarimon J et al (2004) Alpha-synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication. Neurology 62:1835–1838CrossRefPubMedGoogle Scholar
  23. 23.
    Satake W, Nakabayashi Y, Mizuta I et al (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 41:1303–1307CrossRefPubMedGoogle Scholar
  24. 24.
    Simon-Sanchez J, Schulte C, Bras JM et al (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41:1308–1312CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Maries E, Dass B, Collier TJ et al (2003) The role of alpha-synuclein in Parkinson’s disease: insights from animal models. Nat Rev Neurosci 4:727–738CrossRefPubMedGoogle Scholar
  26. 26.
    Iwai A, Masliah E, Yoshimoto M et al (1995) The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14:467–475CrossRefPubMedGoogle Scholar
  27. 27.
    El-Agnaf OM, Salem SA, Paleologou KE et al (2003) Alpha-synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, including human plasma. FASEB J 17:1945–1947PubMedGoogle Scholar
  28. 28.
    Emmanouilidou E, Elenis D, Papasilekas T et al (2011) Assessment of alpha-synuclein secretion in mouse and human brain parenchyma. PLoS One 6:e22225CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jang A, Lee HJ, Suk JE et al (2010) Non-classical exocytosis of alpha-synuclein is sensitive to folding states and promoted under stress conditions. J Neurochem 113:1263–1274PubMedGoogle Scholar
  30. 30.
    Ejlerskov P, Rasmussen I, Nielsen TT et al (2013) Tubulin polymerization-promoting protein (TPPP/p25alpha) promotes unconventional secretion of alpha-synuclein through exophagy by impairing autophagosome-lysosome fusion. J Biol Chem 288:17313–17335CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Emmanouilidou E, Melachroinou K, Roumeliotis T et al (2010) Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci 30:6838–6851CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lee HJ, Patel S, Lee SJ (2005) Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. J Neurosci 25:6016–6024CrossRefPubMedGoogle Scholar
  33. 33.
    Lee HJ, Baek SM, Ho DH et al (2011) Dopamine promotes formation and secretion of non-fibrillar alpha-synuclein oligomers. Exp Mol Med 43:216–222CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bae EJ, Ho DH, Park E et al (2013) Lipid peroxidation product 4-hydroxy-2-nonenal promotes seeding-capable oligomer formation and cell-to-cell transfer of alpha-synuclein. Antioxid Redox Signal 18:770–783CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lee HJ, Cho ED, Lee KW et al (2013) Autophagic failure promotes the exocytosis and intercellular transfer of alpha-synuclein. Exp Mol Med 45, e22CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kim C, Ho DH, Suk JE et al (2013) Neuron-released oligomeric alpha-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 4:1562CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Danzer KM, Ruf WP, Putcha P et al (2011) Heat-shock protein 70 modulates toxic extracellular alpha-synuclein oligomers and rescues trans-synaptic toxicity. FASEB J 25:326–336CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Desplats P, Lee HJ, Bae EJ et al (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci 106:13010–13015CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hansen C, Angot E, Bergstrom AL et al (2011) Alpha-synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest 121:715–725CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lee HJ, Suk JE, Bae EJ et al (2008) Assembly-dependent endocytosis and clearance of extracellular alpha-synuclein. Int J Biochem Cell Biol 40:1835–1849CrossRefPubMedGoogle Scholar
  41. 41.
    Kordower JH, Dodiya HB, Kordower AM et al (2011) Transfer of host-derived alpha synuclein to grafted dopaminergic neurons in rat. Neurobiol Dis 43:552–557CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Li JY, Englund E, Holton JL et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503CrossRefPubMedGoogle Scholar
  43. 43.
    Luk KC, Kehm V, Carroll J et al (2012) Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338:949–953CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Diogenes MJ, Dias RB, Rombo DM et al (2012) Extracellular alpha-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation. J Neurosci 32:11750–11762CrossRefPubMedGoogle Scholar
  45. 45.
    Wakabayashi K, Hayashi S, Yoshimoto M et al (2000) NACP/alpha-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol 99:14–20CrossRefPubMedGoogle Scholar
  46. 46.
    Halliday GM, Stevens CH (2011) Glia: initiators and progressors of pathology in Parkinson’s disease. Mov Disord 26:6–17CrossRefPubMedGoogle Scholar
  47. 47.
    Lee HJ, Suk JE, Patrick C et al (2010) Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285:9262–9272CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lee HJ, Kim C, Lee SJ (2010) Alpha-synuclein stimulation of astrocytes: potential role for neuroinflammation and neuroprotection. Oxid Med Cell Longev 3:283–287CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28:138–145CrossRefPubMedGoogle Scholar
  50. 50.
    Zhang W, Wang T, Pei Z et al (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 19:533–542CrossRefPubMedGoogle Scholar
  51. 51.
    Reynolds AD, Glanzer JG, Kadiu I et al (2008) Nitrated alpha-synuclein-activated microglial profiling for Parkinson’s disease. J Neurochem 104:1504–1525CrossRefPubMedGoogle Scholar
  52. 52.
    Kim C, Cho ED, Kim HK et al (2014) Beta1-integrin-dependent migration of microglia in response to neuron-released alpha-synuclein. Exp Mol Med 46:e91CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Mogi M, Harada M, Narabayashi H et al (1996) Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile Parkinsonism and Parkinson’s disease. Neurosci Lett 211:13–16CrossRefPubMedGoogle Scholar
  54. 54.
    Savarin-Vuaillat C, Ransohoff RM (2007) Chemokines and chemokine receptors in neurological disease: raise, retain, or reduce? Neurotherapeutics 4:590–601CrossRefPubMedGoogle Scholar
  55. 55.
    Reale M, Greig NH, Kamal MA (2009) Peripheral chemo-cytokine profiles in Alzheimer’s and Parkinson’s diseases. Mini Rev Med Chem 9:1229–1241CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Lee HJ, Suk JE, Bae EJ et al (2008) Clearance and deposition of extracellular alpha-synuclein aggregates in microglia. Biochem Biophys Res Commun 372:423–428CrossRefPubMedGoogle Scholar
  57. 57.
    Bae EJ, Lee HJ, Rockenstein E et al (2012) Antibody-aided clearance of extracellular alpha-synuclein prevents cell-to-cell aggregate transmission. J Neurosci 32:13454–13469CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Sung JY, Park SM, Lee CH et al (2005) Proteolytic cleavage of extracellular secreted {alpha}-synuclein via matrix metalloproteinases. J Biol Chem 280:25216–25224CrossRefPubMedGoogle Scholar
  59. 59.
    Tatebe H, Watanabe Y, Kasai T et al (2010) Extracellular neurosin degrades alpha-synuclein in cultured cells. Neurosci Res 67:341–346CrossRefPubMedGoogle Scholar
  60. 60.
    Kim KS, Choi YR, Park JY et al (2012) Proteolytic cleavage of extracellular alpha-synuclein by plasmin: implications for Parkinson disease. J Biol Chem 287:24862–24872CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Spencer B, Michael S, Shen J et al (2013) Lentivirus mediated delivery of neurosin promotes clearance of wild-type alpha-synuclein and reduces the pathology in an alpha-synuclein model of LBD. Mol Ther 21:31–41CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Levin J, Giese A, Boetzel K et al (2009) Increased alpha-synuclein aggregation following limited cleavage by certain matrix metalloproteinases. Exp Neurol 215:201–208CrossRefPubMedGoogle Scholar
  63. 63.
    Sheehan JJ, Tsirka SE (2005) Fibrin-modifying serine proteases thrombin, tPA, and plasmin in ischemic stroke: a review. Glia 50:340–350CrossRefPubMedGoogle Scholar
  64. 64.
    Atwal JK, Chen Y, Chiu C et al (2011) A therapeutic antibody targeting BACE1 inhibits amyloid-beta production in vivo. Sci Transl Med 3:84ra43PubMedGoogle Scholar
  65. 65.
    Delrieu J, Ousset PJ, Caillaud C et al (2012) ‘Clinical trials in Alzheimer’s disease’: immunotherapy approaches. J Neurochem 120(Suppl 1):186–193CrossRefPubMedGoogle Scholar
  66. 66.
    Gros-Louis F, Soucy G, Lariviere R et al (2010) Intracerebroventricular infusion of monoclonal antibody or its derived Fab fragment against misfolded forms of SOD1 mutant delays mortality in a mouse model of ALS. J Neurochem 113:1188–1199PubMedGoogle Scholar
  67. 67.
    Panza F, Frisardi V, Solfrizzi V et al (2012) Immunotherapy for Alzheimer’s disease: from anti-beta-amyloid to tau-based immunization strategies. Immunotherapy 4:213–238CrossRefPubMedGoogle Scholar
  68. 68.
    Masliah E, Rockenstein E, Adame A et al (2005) Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 46:857–868CrossRefPubMedGoogle Scholar
  69. 69.
    Masliah E, Rockenstein E, Mante M et al (2011) Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS One 6:e19338CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Nasstrom T, Goncalves S, Sahlin C et al (2011) Antibodies against alpha-synuclein reduce oligomerization in living cells. PLoS One 6:e27230CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Lee HJ, Bae EJ, Lee SJ (2014) Extracellular alpha—synuclein-a novel and crucial factor in Lewy body diseases. Nat Rev Neurol 10:92–98CrossRefPubMedGoogle Scholar
  72. 72.
    Tran HT, Chung CH, Iba M et al (2014) Alpha-synuclein immunotherapy blocks uptake and templated propagation of misfolded alpha-synuclein and neurodegeneration. Cell Rep 7:2054–2065CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Du HN, Tang L, Luo XY et al (2003) A peptide motif consisting of glycine, alanine, and valine is required for the fibrillization and cytotoxicity of human alpha-synuclein. Biochemistry 42:8870–8878CrossRefPubMedGoogle Scholar
  74. 74.
    Lindstrom V, Fagerqvist T, Nordstrom E et al (2014) Immunotherapy targeting alpha-synuclein protofibrils reduced pathology in (Thy-1)-h[A30P] alpha-synuclein mice. Neurobiol Dis 69:134–143CrossRefPubMedGoogle Scholar
  75. 75.
    Mandler M, Valera E, Rockenstein E et al (2014) Next-generation active immunization approach for synucleinopathies: implications for Parkinson’s disease clinical trials. Acta Neuropathol 127:861–879CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Niewoehner J, Bohrmann B, Collin L et al (2014) Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81:49–60CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Medicine, Neuroscience Research InstituteSeoul National University College of MedicineSeoulSouth Korea

Personalised recommendations