Skip to main content

Immunotherapy Against Amyloid-β Protofibrils: Opportunities and Challenges

  • Protocol
  • First Online:
  • 901 Accesses

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Immunotherapy has emerged as a promising treatment option for Alzheimer’s disease (AD). Although many challenges still remain, data from drug programs within the immunotherapy area indicate that targeting amyloid β peptide (Aβ) with monoclonal antibodies might lead to positive treatment effects. Antibodies can be made highly specific for their target and monoclonal antibodies usually have a more favorable safety profile as compared to small molecules. Results from previous immunotherapy trials have indicated the importance of targeting early AD. Some of the anti-Aβ immunotherapy studies indicate that positive effects in the clinic are possible, which is encouraging for continued research. Promisingly, the monoclonal antibody aducanumab had dose-dependent effects both on cognitive measures and on amyloid PET imaging following 12 months of treatment. This is the first time a candidate drug targeting Aβ has shown a clinical effect. Our finding of the Arctic AD mutation in the amyloid β precursor protein (AβPP) gene led us to consider large soluble oligomers, i.e., protofibrils, of Aβ as particularly toxic and a promising target for immunotherapy. Furthermore, both preclinical and clinical data suggest that Aβ protofibrils have particular neurotoxic properties. Our research efforts lead to the isolation of mAb158, an antibody highly selective for these Aβ species. However, several of the antibodies in clinical trials have caused amyloid-related imaging abnormalities (ARIAs), side effects that pose a problem for the development of this class of drugs. BAN2401 is the humanized version of mAb158 and the antibody is now in a large phase 2b trial. The safety profile has so far been satisfactory.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

A4:

Anti-amyloid treatment in Alzheimer’s disease prevention trial

Aβ:

Amyloid β

AD:

Alzheimer’s disease

API:

Alzheimer’s prevention initiative

ARIA-E:

Amyloid-related imaging abnormalities with edema

ARIA-H:

Amyloid-related imaging abnormalities with microhemorrhages

BACE:

Beta-secretase

CSF:

Cerebrospinal fluid

DIAN:

Dominantly inherited Alzheimer network trial

References

  1. Glenner GG, Wong CW (1984) Alzheimer’s disease and Down syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122(3):1131–1135

    Article  CAS  PubMed  Google Scholar 

  2. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  3. Golde T (2005) The Abeta hypothesis: leading us to rationally-designed therapeutic strategies for the treatment or prevention of Alzheimer disease. Brain Pathol 15:84–87

    Article  CAS  PubMed  Google Scholar 

  4. Chartier-Harlin M-C, Crawford F, Houlden H (1991) Early-onset alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353:844–846

    Google Scholar 

  5. Mullan M, Crawford F, Axelman K et al (1992) A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet 1:345–347

    Article  CAS  PubMed  Google Scholar 

  6. Citron M, Oltersdorf T, Haass C et al (1992) Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. Nature 360:672–674

    Article  CAS  PubMed  Google Scholar 

  7. Scheuner D, Eckman CB, Jensen M et al (1996) Secreted amyloid beta-protein similar to that in senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2(8):864–870

    Article  CAS  PubMed  Google Scholar 

  8. Nilsberth C, Westlind-Danielsson A, Eckman CB et al (2001) The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Abeta protofibril formation. Nat Neurosci 4:887–893

    Article  CAS  PubMed  Google Scholar 

  9. Bouwers N, Sleegers K, Van Broeckhoven C (2008) Molecular genetics of Alzheimer’s disease: an update. Ann Med 40(8):562–583

    Article  Google Scholar 

  10. Schöll M, Wall A, Thordardottir S et al (2012) Low PiB PET retention in presence of pathologic CSF biomarkers in Arctic APP mutation carriers. Neurology 79(3):229–236

    Article  PubMed  Google Scholar 

  11. Mawuenyega KG, Sigurdson W, Ovod V et al (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schenk D, Barbour R, Dunn W et al (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400(6740):173–177

    Article  CAS  PubMed  Google Scholar 

  13. Gilman S, Koller M, Black R et al (2005) Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64(9):1553–1562

    Article  CAS  PubMed  Google Scholar 

  14. Vellas B, Black R, Thal LJ et al (2009) Long-term follow-up of patients immunized with AN1792: reduced functional decline in antibody responders. Curr Alzheimer Res 6:144–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blennow K, Zetterberg H, Rinne J et al (2012) Effect of immunotherapy with bapineuzumab on cerebrospinal fluid biomarker levels in patients with mild to moderate Alzheimer disease. Arch Neurol 69(8):1002–1010

    Article  PubMed  Google Scholar 

  16. Rinne J, Brooks D, Rossor M et al (2010) 11C-PiB PET assessment of change in fibrilla amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending dose study. Lancet Neurol 9(4):363–372

    Article  CAS  PubMed  Google Scholar 

  17. Salloway S, Sperling R, Fox NC et al (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):322–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Farlow M, Arnold SE, van Dyck CH et al (2012) Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. Alzheimers Dement 8:261–271

    Article  CAS  PubMed  Google Scholar 

  19. Lilly. Alzheimer Research Forum 24 August, 2012. www.alzforum.org

  20. Doody RS, Thomas RG, Farlow M et al (2014) Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):311–321

    Article  CAS  PubMed  Google Scholar 

  21. Lannfelt L, Relkin NR, Siemers ER (2014) Amyloid-beta directed immunotherapy for Alzheimer’s disease. J Intern Med 275(3):284–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Logovinsky V, Satlin A, Lai R, Swanson C, Kaplow J, Osswald G, Basun B, Lannfelt L. (in press) Safety and tolerability of BAN2401—a clinical study in Alzheimer´s disease with a protofibril selective Aβ antibody. Alzheimer Res Ther.

    Google Scholar 

  23. Katzman R (1986) Alzheimer’s disease. N Engl J Med 314:964–973

    Article  CAS  PubMed  Google Scholar 

  24. Terry RD, Masliah E, Salmon DP et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    Article  CAS  PubMed  Google Scholar 

  25. Dickson DW, Chrystal HA, Bevona C et al (1995) Correlations of synaptic and pathological markers with cognition of the elderly. Neurobiol Aging 16:285–298

    Article  CAS  PubMed  Google Scholar 

  26. Näslund J, Haroutunian V, Mohs R et al (2000) Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 283(12):1571–1577

    Article  PubMed  Google Scholar 

  27. Ingelsson M, Fukumoto H, Newell KL et al (2004) Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 62(6):925–931

    Article  CAS  PubMed  Google Scholar 

  28. Pike CJ, Walancewics AJ, Glabe CG et al (1991) In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res 563:311–314

    Article  CAS  PubMed  Google Scholar 

  29. Busciglio J, Lorenzo A, Yankner B (1992) Methodological variables in the assessment of beta-amyloid neurotoxicity. Neurobiol Aging 13:609–612

    Article  CAS  PubMed  Google Scholar 

  30. Walsh DM, Hartley DM, Kusumoto Y et al (1997) Amyloid beta-protein fibrillogenesis. J Biol Chem 272(35):22364–22372

    Article  CAS  PubMed  Google Scholar 

  31. Hartley DM, Walsh DM, Ye CP et al (1999) Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci 19(20):8876–8884

    CAS  PubMed  Google Scholar 

  32. O’Nuallain B, Freir DB, Nicoll AJ et al (2010) Amyloid beta-protein dimers rapidly form stable synaptotoxic protofibrils. J Neurosci 30(43):14411–14419

    Article  PubMed  PubMed Central  Google Scholar 

  33. Paranjape GS, Gouwens LK, Osborn DC et al (2012) Isolated amyloid-beta(1-42) protofibrils, but not isolated fibrils, are robust stimulators of microglia. ACS Chem Neurosci 3(4):302–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McLean C, Cherny R, Fraser F et al (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866

    Article  CAS  PubMed  Google Scholar 

  35. Johansson AS, Berglind-Dehlin F, Karlsson G et al (2006) Physiochemical characterization of the Alzheimer’s disease-related peptides A beta 1-42Arctic and A beta 1-42wt. FEBS J 273(12):2618–2630

    Article  CAS  PubMed  Google Scholar 

  36. Lesne S, Koh MT, Kotilinek L et al (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440(7082):352–357

    Article  CAS  PubMed  Google Scholar 

  37. Englund H, Sehlin D, Johansson AS et al (2007) Sensitive ELISA detection of amyloid-beta protofibrils in biological samples. J Neurochem 103(1):334–345

    CAS  PubMed  Google Scholar 

  38. Sehlin D, Englund H, Simu B et al (2012) Large aggregates are the major soluble Abeta species in AD brain fractionated with density gradient ultracentrifugation. PLoS One 7(2), e32014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sahlin C, Lord A, Magnusson K et al (2007) The Arctic Alzheimer mutation favors intracellular amyloid-beta production by making amyloid precursor protein less available to alpha-secretase. J Neurochem 101(3):854–862

    Article  CAS  PubMed  Google Scholar 

  40. Philipson O, Hammarstrom P, Nilsson KP et al (2009) A highly insoluble state of Abeta similar to that of Alzheimer’s disease brain is found in Arctic APP transgenic mice. Neurobiol Aging 30(9):1393–1405

    Article  CAS  PubMed  Google Scholar 

  41. Lord A, Kalimo H, Eckman CB et al (2006) The Arctic Alzheimer mutation facilitates early intraneuronal Abeta aggregation and senile plaque formation in transgenic mice. Neurobiol Aging 27:67–77

    Article  CAS  PubMed  Google Scholar 

  42. Lord A, Englund H, Soderberg L et al (2009) Amyloid-beta protofibril levels correlate with spatial learning in Arctic Alzheimer’s disease transgenic mice. FEBS J 276(4):995–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Magnusson K, Sehlin D, Syvanen S et al (2013) Specific uptake of an amyloid-beta protofibril-binding antibody-tracer in AbetaPP transgenic mouse brain. J Alzheimers Dis 37(1):29–40

    CAS  PubMed  Google Scholar 

  44. Lord A, Gumucio A, Englund H et al (2009) An amyloid-beta protofibril-selective antibody prevents amyloid formation in a mouse model of Alzheimer’s disease. Neurobiol Dis 36(3):425–434

    Article  CAS  PubMed  Google Scholar 

  45. Tucker S, Möller C, Tegerstedt K et al (2015) The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J Alzheimers Dis 43:575–588

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Hans Basun, Gunilla Osswald, Christer Möller, Dag Sehlin, and Anna Lord for helpful comments on the manuscript.

Competing Interests:

Lars Lannfelt is co-founder of BioArctic Neuroscience AB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Lannfelt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lannfelt, L. (2016). Immunotherapy Against Amyloid-β Protofibrils: Opportunities and Challenges. In: Ingelsson, M., Lannfelt, L. (eds) Immunotherapy and Biomarkers in Neurodegenerative Disorders. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3560-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3560-4_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3558-1

  • Online ISBN: 978-1-4939-3560-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics