Immunotherapy Against N-Truncated Amyloid-β Oligomers

  • Thomas A. BayerEmail author
  • Oliver Wirths
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Immunotherapy against aggregated proteins has received considerable attention in the field of neurodegenerative disorders, especially true for Alzheimer’s disease (AD), which is characterized by the presence of extracellular amyloid-Aβ plaques and intraneuronal neurofibrillary tangles consisting of tau protein. Numerous studies have demonstrated that the amyloid cascade triggers tau pathology, with tau being intimately involved in the molecular mechanisms leading to neuron death in AD. We and others therefore believe that Aβ is the trigger and tau is the executer of neurodegeneration. The nature of neurotoxic Aβ is still enigmatic, because amyloid-plaque structures that harbor high levels of Aβ are not correlating with the symptoms of AD, nor do they trigger neuron loss. New hypotheses have emerged trying to explain this conundrum. One is that amyloid plaques, although built as a consequence of high Aβ levels in brain, are acting as a waste bin, thereby keeping toxic Aβ aggregates locally fixed in a nontoxic form. Another hypothesis claims that intraneuronal Aβ aggregation triggers neuron loss and lastly many researchers believe that soluble Aβ aggregates of full-length Aβ1–42 are the major trigger for the amyloid cascade of pathological events. On the other side, Aβ1–42 has consistently been shown to aggregate fast into amyloid fibrils that are the building blocks of amyloid plaques while it should not be forgotten that full-length Aβ1–42 is a physiological peptide produced throughout our life-span. There is now increasing evidence that N-truncated Aβ variants represent better drug targets than full-length Aβ. Full-length Aβ peptides start with an aspartate at position 1 (Asp-1) and end with alanine at position 42 (Ala-42). In AD brain, two N-truncated species are especially highly abundant: Pyroglutamate Aβ3–42 (AβpE3–42) starts with a transformation of Glu to pyroglutamate at position three (pyroGlu-3), and Aβ4–42 starts with Phe at position four (Phe-4). In contrast to pan-Aβ antibodies or antibodies that recognize all forms of pyroglutamate Aβ3–42 those antibodies that recognize exclusively oligomeric forms of pyroglutamate Aβ3–42 and/or Aβ4–42 have a low tendency to detect amyloid plaques. Both variants form soluble aggregates, have a high aggregation propensity, and have toxic properties in cell culture assays. Once expressed in neurons in transgenic mouse brain, they induce massive neuron loss associated with behavioral deficits. Interestingly, only minor plaque load is seen in these models arguing for a toxic mechanism of soluble aggregates of pyroglutamate Aβ3–42 and Aβ4–42. Therefore, we believe that these oligomer-specific antibodies will provide excellent tools for drug development to fight AD.

Key words

Transgene model Plaques Pyroglutamate Abeta Abeta 4–42 Neurodegeneration Neuropathology Neuron loss 


  1. 1.
    Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766PubMedGoogle Scholar
  2. 2.
    Selkoe DJ (1998) The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol 8(11):447–453CrossRefPubMedGoogle Scholar
  3. 3.
    Bayer T, Wirths O (2014) Focusing the amyloid cascade hypothesis on N-truncated Abeta peptides as drug targets against Alzheimer’s disease. Acta Neuropathol 127(6):787–801CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kuo YM, Webster S, Emmerling MR et al (1998) Irreversible dimerization/tetramerization and post-translational modifications inhibit proteolytic degradation of A beta peptides of Alzheimer’s disease. Biochim Biophys Acta 1406(3):291–298CrossRefPubMedGoogle Scholar
  5. 5.
    Shimizu T, Matsuoka Y, Shirasawa T (2005) Biological significance of isoaspartate and its repair system. Biol Pharm Bull 28(9):1590–1596CrossRefPubMedGoogle Scholar
  6. 6.
    Kumar S, Rezaei-Ghaleh N, Terwel D et al (2011) Extracellular phosphorylation of the amyloid beta-peptide promotes formation of toxic aggregates during the pathogenesis of Alzheimer’s disease. EMBO J 30(11):2255–2265CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dong J, Atwood CS, Anderson VE et al (2003) Metal binding and oxidation of amyloid-β within isolated senile plaque cores: Raman microscopic evidence†. Biochemistry 42(10):2768–2773CrossRefPubMedGoogle Scholar
  8. 8.
    Jawhar S, Wirths O, Bayer TA (2011) Pyroglutamate Abeta - a hatchet man in Alzheimer disease. J Biol Chem 286(45):38825–38832CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Perez-Garmendia R, Gevorkian G (2013) Pyroglutamate-modified amyloid beta peptides: emerging targets for Alzheimer s disease immunotherapy. Curr Neuropharmacol 11(5):491–498CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Doody RS, Thomas RG, Farlow M et al (2014) Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):311–321CrossRefPubMedGoogle Scholar
  11. 11.
    Salloway S, Sperling R, Fox NC et al (2014) Two Phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):322–333CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Masters CL, Simms G, Weinman NA et al (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci 82:4245–4249CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890CrossRefPubMedGoogle Scholar
  14. 14.
    Selkoe DJ, Abraham CR, Podlisny MB et al (1986) Isolation of low-molecular-weight proteins from amyloid plaque fibers in Alzheimer’s disease. J Neurochem 46(6):1820–1834CrossRefPubMedGoogle Scholar
  15. 15.
    Mori H, Takio K, Ogawara M et al (1992) Mass spectrometry of purified amyloid beta protein in Alzheimer’s disease. J Biol Chem 267(24):17082–17086PubMedGoogle Scholar
  16. 16.
    Miller DL, Papayannopoulos IA, Styles J et al (1993) Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer’s disease. Arch Biochem Biophys 301(1):41–52CrossRefPubMedGoogle Scholar
  17. 17.
    Lewis H, Beher D, Cookson N et al (2006) Quantification of Alzheimer pathology in ageing and dementia: age-related accumulation of amyloid-β (42) peptide in vascular dementia. Neuropathol Appl Neurobiol 32(2):103–118CrossRefPubMedGoogle Scholar
  18. 18.
    Teller JK, Russo C, DeBusk LM et al (1996) Presence of soluble amyloid beta-peptide precedes amyloid plaque formation in Down’s syndrome. Nat Med 2(1):93–95CrossRefPubMedGoogle Scholar
  19. 19.
    Scheuner D, Eckman C, Jensen M et al (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2(8):864–870CrossRefPubMedGoogle Scholar
  20. 20.
    Citron M, Westaway D, Xia W et al (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nat Med 3(1):67–72CrossRefPubMedGoogle Scholar
  21. 21.
    Saido TC, Iwatsubo T, Mann DM et al (1995) Dominant and differential deposition of distinct beta-amyloid peptide species, Abeta N3(pE), in senile plaques. Neuron 14(2):457–466CrossRefPubMedGoogle Scholar
  22. 22.
    Russo C, Saido TC, DeBusk LM et al (1997) Heterogeneity of water-soluble amyloid beta-peptide in Alzheimer’s disease and Down’s syndrome brains. FEBS Lett 409(3):411–416CrossRefPubMedGoogle Scholar
  23. 23.
    Russo C, Schettini G, Saido TC et al (2000) Presenilin-1 mutations in Alzheimer’s disease. Nature 405(6786):531–532CrossRefPubMedGoogle Scholar
  24. 24.
    Sergeant N, Bombois S, Ghestem A et al (2003) Truncated beta-amyloid peptide species in pre-clinical Alzheimer’s disease as new targets for the vaccination approach. J Neurochem 85(6):1581–1591CrossRefPubMedGoogle Scholar
  25. 25.
    Miravalle L, Calero M, Takao M et al (2005) Amino-terminally truncated Abeta peptide species are the main component of cotton wool plaques. Biochemistry 44(32):10810–10821CrossRefPubMedGoogle Scholar
  26. 26.
    Güntert A, Dobeli H, Bohrmann B (2006) High sensitivity analysis of amyloid-beta peptide composition in amyloid deposits from human and PS2APP mouse brain. Neuroscience 143(2):461–475CrossRefPubMedGoogle Scholar
  27. 27.
    Portelius E, Bogdanovic N, Gustavsson MK et al (2010) Mass spectrometric characterization of brain amyloid beta isoform signatures in familial and sporadic Alzheimer’s disease. Acta Neuropathol 120(2):185–193CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Schieb H, Kratzin H, Jahn O et al (2011) Beta-amyloid peptide variants in brains and cerebrospinal fluid from amyloid precursor protein (APP) transgenic mice: comparison with human Alzheimer amyloid. J Biol Chem 286(39):33747–33758CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Moore BD, Chakrabarty P, Levites Y et al (2012) Overlapping profiles of abeta peptides in the Alzheimer’s disease and pathological aging brains. Alzheimers Res Ther 4(3):18CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wirths O, Bethge T, Marcello A et al (2010) Pyroglutamate Abeta pathology in APP/PS1KI mice, sporadic and familial Alzheimer’s disease cases. J Neural Transm 117(1):85–96CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wirths O, Erck C, Martens H et al (2010) Identification of low molecular weight pyroglutamate Abeta oligomers in Alzheimer disease: a novel tool for therapy and diagnosis. J Biol Chem 285(53):41517–41524CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Antonios G, Saiepour N, Bouter Y et al (2013) N-truncated Abeta starting with position four: early intraneuronal accumulation and rescue of toxicity using NT4X-167, a novel monoclonal antibody. Acta Neuropathol Commun 1(1):56. doi: 10.1186/2051-5960-1-56 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Harigaya Y, Saido TC, Eckman CB et al (2000) Amyloid beta protein starting pyroglutamate at position 3 is a major component of the amyloid deposits in the Alzheimer’s disease brain. Biochem Biophys Res Commun 276(2):422–427CrossRefPubMedGoogle Scholar
  34. 34.
    Kalback W, Watson MD, Kokjohn TA et al (2002) APP transgenic mice Tg2576 accumulate Abeta peptides that are distinct from the chemically modified and insoluble peptides deposited in Alzheimer’s disease senile plaques. Biochemistry 41(3):922–928CrossRefPubMedGoogle Scholar
  35. 35.
    Kawarabayashi T, Younkin L, Saido T et al (2001) Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J Neurosci 21(2):372–381PubMedGoogle Scholar
  36. 36.
    Sturchler-Pierrat C, Abramowski D, Duke M et al (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci U S A 94(24):13287–13292CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kuo YM, Kokjohn TA, Beach TG et al (2001) Comparative analysis of amyloid-beta chemical structure and amyloid plaque morphology of transgenic mouse and Alzheimer’s disease brains. J Biol Chem 276(16):12991–12998CrossRefPubMedGoogle Scholar
  38. 38.
    Frost JL, Le KX, Cynis H et al (2013) Pyroglutamate-3 amyloid-β deposition in the brains of humans, non-human primates, canines, and Alzheimer disease–like transgenic mouse models. Am J Pathol 183(2):369–381CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Casas C, Sergeant N, Itier JM et al (2004) Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model. Am J Pathol 165(4):1289–1300CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wirths O, Weis J, Kayed R et al (2007) Age-dependent axonal degeneration in an Alzheimer mouse model. Neurobiol Aging 28(11):1689–1699CrossRefPubMedGoogle Scholar
  41. 41.
    Breyhan H, Wirths O, Duan K et al (2009) APP/PS1KI bigenic mice develop early synaptic deficits and hippocampus atrophy. Acta Neuropathol 117(6):677–685CrossRefPubMedGoogle Scholar
  42. 42.
    Oakley H, Cole SL, Logan S et al (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26(40):10129–10140CrossRefPubMedGoogle Scholar
  43. 43.
    Jawhar S, Trawicka A, Jenneckens C et al. (2012) Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Abeta aggregation in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol Aging 33(1). doi:196.e29-196.e40Google Scholar
  44. 44.
    Jawhar S, Wirths O, Schilling S et al (2011) Overexpression of glutaminyl cyclase, the enzyme responsible for pyroglutamate abeta formation, induces behavioral deficits, and glutaminyl cyclase knock-out rescues the behavioral phenotype in 5XFAD mice. J Biol Chem 286(6):4454–4460CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wirths O, Breyhan H, Cynis H et al (2009) Intraneuronal pyroglutamate-Abeta 3-42 triggers neurodegeneration and lethal neurological deficits in a transgenic mouse model. Acta Neuropathol 118:487–496CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Alexandru A, Jagla W, Graubner S et al (2011) Selective hippocampal neurodegeneration in transgenic mice expressing small amounts of truncated A{beta} is induced by pyroglutamate-A{beta} formation. J Neurosci 31(36):12790–12801CrossRefPubMedGoogle Scholar
  47. 47.
    Wittnam JL, Portelius E, Zetterberg H et al (2012) Pyroglutamate amyloid β (Aβ) aggravates behavioral deficits in transgenic amyloid mouse model for Alzheimer disease. J Biol Chem 287(11):8154–8162CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Cynis H, Schilling S, Bodnar M et al (2006) Inhibition of glutaminyl cyclase alters pyroglutamate formation in mammalian cells. Biochim Biophys Acta 1764(10):1618–1625CrossRefPubMedGoogle Scholar
  49. 49.
    Bouter Y, Dietrich K, Wittnam JL et al (2013) N-truncated amyloid beta (Abeta) 4-42 forms stable aggregates and induces acute and long-lasting behavioral deficits. Acta Neuropathol 126(2):189–205CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Bouter Y, Kacprowski T, Weissmann R et al (2014) Deciphering the molecular profile of plaques, memory decline and neuron loss in two mouse models for Alzheimer’s disease by deep sequencing. Front Aging Neurosci 6:75. doi: 10.3389/fnagi.2014.00075 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Pike CJ, Overman MJ, Cotman CW (1995) Amino-terminal deletions enhance aggregation of beta-amyloid peptides in vitro. J Biol Chem 270(41):23895–23898CrossRefPubMedGoogle Scholar
  52. 52.
    Russo C, Violani E, Salis S et al (2002) Pyroglutamate-modified amyloid -peptides - AbetaN3(pE) - strongly affect cultured neuron and astrocyte survival. J Neurochem 82(6):1480–1489CrossRefPubMedGoogle Scholar
  53. 53.
    Schilling S, Lauber T, Schaupp M et al (2006) On the seeding and oligomerization of pGlu-amyloid peptides (in vitro). Biochemistry 45(41):12393–12399CrossRefPubMedGoogle Scholar
  54. 54.
    Schlenzig D, Manhart S, Cinar Y et al (2009) Pyroglutamate formation influences solubility and amyloidogenicity of amyloid peptides. Biochemistry 48(29):7072–7078CrossRefPubMedGoogle Scholar
  55. 55.
    Walsh DM, Klyubin I, Fadeeva JV et al (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880):535–539CrossRefPubMedGoogle Scholar
  56. 56.
    Youssef I, Florent-Béchard S, Malaplate-Armand C et al (2008) N-truncated amyloid-β oligomers induce learning impairment and neuronal apoptosis. Neurobiol Aging 29(9):1319–1333CrossRefPubMedGoogle Scholar
  57. 57.
    Nussbaum JM, Schilling S, Cynis H et al (2012) Prion-like behaviour and tau-dependent cytotoxicity of pyroglutamylated amyloid-beta. Nature 485(7400):651–655CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Matos JO, Goldblat G, Jeon J et al (2014) Pyroglutamylated amyloid-β peptide reverses cross β-sheets by a prion-like mechanism. J Phys Chem B 118(21):5637–5643CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Schenk D, Barbour R, Dunn W et al (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400(6740):173–177CrossRefPubMedGoogle Scholar
  60. 60.
    Orgogozo JM, Gilman S, Dartigues JF et al (2003) Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 61(1):46–54CrossRefPubMedGoogle Scholar
  61. 61.
    Monsonego A, Imitola J, Petrovic S et al (2006) Aβ-induced meningoencephalitis is IFN-γ-dependent and is associated with T cell-dependent clearance of Aβ in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 103(13):5048–5053CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Bard F, Barbour R, Cannon C et al (2003) Epitope and isotype specificities of antibodies to β-amyloid peptide for protection against Alzheimer’s disease-like neuropathology. Proc Natl Acad Sci 100(4):2023–2028CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Bard F, Cannon C, Barbour R et al (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6(8):916–919CrossRefPubMedGoogle Scholar
  64. 64.
    Burbach GJ, Vlachos A, Ghebremedhin E et al (2007) Vessel ultrastructure in APP23 transgenic mice after passive anti-Aβ immunotherapy and subsequent intracerebral hemorrhage. Neurobiol Aging 28(2):202–212CrossRefPubMedGoogle Scholar
  65. 65.
    Pfeifer M, Boncristiano S, Bondolfi L et al (2002) Cerebral hemorrhage after passive anti-Aβ immunotherapy. Science 298(5597):1379CrossRefPubMedGoogle Scholar
  66. 66.
    Tayeb HO, Murray ED, Price BH et al (2013) Bapineuzumab and solanezumab for Alzheimer’s disease: is the ‘amyloid cascade hypothesis’ still alive? Expert Opin Biol Ther 13(7):1075–1084CrossRefPubMedGoogle Scholar
  67. 67.
    Britschgi M, Olin CE, Johns HT et al (2009) Neuroprotective natural antibodies to assemblies of amyloidogenic peptides decrease with normal aging and advancing Alzheimer’s disease. Proc Natl Acad Sci U S A 106(29):12145–12150CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Marcello A, Wirths O, Schneider-Axmann T et al (2011) Reduced levels of IgM autoantibodies against N-truncated pyroglutamate Abeta in plasma of patients with Alzheimer’s disease. Neurobiol Aging 32(8):1379–1387CrossRefPubMedGoogle Scholar
  69. 69.
    Roh JH, Huang Y, Bero AW et al. (2012) Disruption of the sleep-wake cycle and diurnal fluctuation of beta-amyloid in mice with Alzheimer’s disease pathology. Sci Transl Med 4(150):150ra122Google Scholar
  70. 70.
    Snyder EM, Nong Y, Almeida CG et al (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8(8):1051–1058CrossRefPubMedGoogle Scholar
  71. 71.
    Frost JL, Liu B, Kleinschmidt M et al (2012) Passive immunization against pyroglutamate-3 amyloid-beta reduces plaque burden in Alzheimer-like transgenic mice: a pilot study. Neurodegener Dis 10(1-4):265–270CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Demattos RB, Lu J, Tang Y et al (2012) A plaque-specific antibody clears existing beta-amyloid plaques in Alzheimer’s disease mice. Neuron 76(5):908–920CrossRefPubMedGoogle Scholar
  73. 73.
    Venkataramani V, Wirths O, Budka H et al (2012) Antibody 9D5 recognizes oligomeric pyroglutamate amyloid-beta in a fraction of amyloid-beta deposits in Alzheimer’s disease without cross-reactivity with other protein aggregates. J Alzheimers Dis 29:361–371PubMedGoogle Scholar
  74. 74.
    Wirths O, Hillmann A, Pradier L et al (2013) Oligomeric pyroglutamate amyloid-beta is present in microglia and a subfraction of vessels in patients with Alzheimer’s disease: implications for immunotherapy. J Alzheimers Dis 35:741–749PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG)Georg-August-UniversityGöttingenGermany

Personalised recommendations