Active Immunization Against the Amyloid-β Peptide

  • Enchi LiuEmail author
  • J. Michael Ryan
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Alzheimer’s disease (AD) has a devastating toll not only on the affected individuals but also on their families, caregivers, and society as a whole. Several therapies have been approved to treat AD, all of which provide modest effect on the symptoms of the illness but without slowing or halting the underlying disease processes. Since the last of these therapies was approved, the largest research effort has been devoted to developing therapies targeting amyloid-β, specifically Aβ42, as this protein is thought to initiate the cascade of events that lead to the disease. This chapter focuses on active immunotherapy (vaccines) and specifically on therapies that currently are in clinical development.

Key words

Alzheimer’s disease Amyloid-β Active immunotherapy Therapeutic vaccine 


  1. 1.
    Bachman DL, Wolf PA, Linn R et al (1992) Prevalence of dementia and probable senile dementia of the Alzheimer type in the Framingham Study. Neurology 42:115–119CrossRefPubMedGoogle Scholar
  2. 2.
    Rocca WA, Hofman A, Brayne C et al (1991) Frequency and distribution of Alzheimer’s disease in Europe: a collaborative study of 1980-1990 prevalence findings. Ann Neurol 30(3):381–390CrossRefPubMedGoogle Scholar
  3. 3.
    Cummings JL, Cole G (2002) Alzheimer disease. JAMA 287:2335–2338CrossRefPubMedGoogle Scholar
  4. 4.
    Cummings JL (2004) Alzheimer’s disease. N Engl J Med 351:56–67CrossRefPubMedGoogle Scholar
  5. 5.
    Brookmeyer R, Johnson E, Zieger-Graham K et al (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3:186–191CrossRefPubMedGoogle Scholar
  6. 6.
    Alzheimer’ s Association (2015) Alzheimer’s disease facts and figures. Alzheimers Dement 11(3):332CrossRefGoogle Scholar
  7. 7.
    Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356CrossRefPubMedGoogle Scholar
  8. 8.
    Selkoe D (2011) Resolving controversies on the path to Alzheimer’s therapeutics. Nat Med 17(9):1060–1065CrossRefPubMedGoogle Scholar
  9. 9.
    Citron M, Oltersdorf T, Haass C et al (1992) Mutation of the J-amyloid precursor protein in familial Alzheimer’s disease increases J-protein production. Nature 360:672–674CrossRefPubMedGoogle Scholar
  10. 10.
    Scheuner D, Eckman C, Jensen M et al (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2:864–870CrossRefPubMedGoogle Scholar
  11. 11.
    Citron M, Westaway D, Xia W et al (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nat Med 3(1):67–72CrossRefPubMedGoogle Scholar
  12. 12.
    Mawuenyega K, Sigurdson W, Oyod V et al (2010) Decreased clearance of CNS beta amyloid in AD. Science 330(6012):1774CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Holtzman DM, Morris JC, Goate AM (2011) Alzheimer’s disease: the challenge of the second century. Sci Transl Med 3:77sr1PubMedPubMedCentralGoogle Scholar
  14. 14.
    Bertram L, Tanzi RE (2012) The genetics of Alzheimer’s disease. Prog Mol Biol Transl Sci 107:79–100CrossRefPubMedGoogle Scholar
  15. 15.
    Jonsson T, Atwal J, Steinberg S et al (2012) A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488:96–99CrossRefPubMedGoogle Scholar
  16. 16.
    Grimmer T, Tholen S, Yousefi BH et al (2010) Progression of cerebral amyloid load is associated with the apolipoprotein E ε-4 genotype in Alzheimer’s disease. Biol Psychiatry 68:879–884CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Castellano JM, Kim JS, Stewart FR et al (2011) Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Science Translational Medicine 9(89):89ra57. doi: 10.1126/scitranslmed.3002156 Google Scholar
  18. 18.
    Caccamo A, Oddo S, Sugarman MC et al (2005) Age- and region-dependent alterations in Abeta-degrading enzymes: implications for Abeta-induced disorders. Neurobiol Aging 26(5):645–654CrossRefPubMedGoogle Scholar
  19. 19.
    Jin M, Shepardson N, Yang T et al (2011) Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. PNAS 108(14):5819–5824CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Braak H, Thal DR, Ghebremedhin E et al (2011) Stages of the pathologic process in Alzheimer’s disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70(11):960–969CrossRefPubMedGoogle Scholar
  21. 21.
    Knapp MJ, Knopman DS, Solomon PR et al (1994) A 30-week randomized controlled trial of high-dose tacrine in patients with Alzheimer’s disease. The Tacrine Study Group. JAMA 271:985–991CrossRefPubMedGoogle Scholar
  22. 22.
    Rogers SL, Doody RS, Mohs RC (1998) Donepezil improves cognition and global function in Alzheimer disease: a 15-week, double-blind, placebo-controlled study. Donepezil Study Group. Arch Intern Med 158:1021–1031CrossRefPubMedGoogle Scholar
  23. 23.
    Trinh NH, Hoblyn J, Mohanty S et al (2003) Efficacy of cholinesterase inhibitors in the treatment of neuropsychiatric symptoms and functional impairment in Alzheimer disease. JAMA 289:210–216CrossRefPubMedGoogle Scholar
  24. 24.
    Schneider L, Mangialasche F, Andreasen N et al (2014) Clinical trials and late-stage drug development for Alzheimer’s disease: an appraisal from 1984 to 2014. J Intern Med 275(3):251–283CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Cummings JL, Morstorf T, Zhong K (2014) Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther 6:37CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Schenk D, Barbour R, Dunn W et al (1999) Immunization with amyloid-β attenuates Alzheimer disease-like pathology in the PDAPP mouse. Nature 400:173–177CrossRefPubMedGoogle Scholar
  27. 27.
    Town T (2009) Alternative Aβ immunotherapy approaches for Alzheimer’s disease. CNS Neurol Disord Drug Targets 8(2):114–127CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fu HJ, Liu B, Frost JL, Lemere CA (2010) Amyloid-β immunotherapy for Alzheimer’s disease. CNS Neurol Disord Drug Targets 9(2):197–206CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Schenk D, Basi GS, Pangalos MN (2012) Treatment strategies targeting amyloid β-protein. Cold Spring Harb Perspect Med 2:a006387CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bard F, Cannon C, Barbour R et al (2000) Peripherally administered antibodies against amyloid β peptide enter the central nervous system and induce pathology in a mouse model of Alzheimer disease. Nature 6:916–919Google Scholar
  31. 31.
    Bacskai BJ, Hickey GA, Skoch J et al (2003) Four-dimensional multiphoton imaging of brain entry, amyloid binding, and clearance of an amyloid-beta ligand in transgenic mice. Proc Natl Acad Sci U S A 100(21):12462–7CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Games D, Adams D, Alessandrini R et al (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373:523–527CrossRefPubMedGoogle Scholar
  33. 33.
    Wisniewski T, Boutajangout A (2010) Immunotherapeutic approaches for Alzheimer’s disease in transgenic mouse models. Brain Struct Funct 214:201–218CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Schenk D, Hagen M, Seubert P (2004) Current progress in β-amyloid immunotherapy. Curr Opin Immunol 16:599–606CrossRefPubMedGoogle Scholar
  35. 35.
    Shankar GM, Li S, Mehta TH et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14(8):837–42CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zago W, Buttini M, Comery TA et al (2012) Neutralization of soluble, synaptotoxic amyloid β species by antibodies is epitope specific. J Neurosci 32(8):2696–2702CrossRefPubMedGoogle Scholar
  37. 37.
    Bayer A, Bullock R, Jones RW et al (2005) Evaluation of the safety and immunogenicity of synthetic Aβ42 (AN1792) in patients with AD. Neurology 64:94–101CrossRefPubMedGoogle Scholar
  38. 38.
    Gilman S, Koller M, Black RSK et al (2005) Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64:1553–1562CrossRefPubMedGoogle Scholar
  39. 39.
    Lee M, Bard F, Johnson-Wood K et al (2005) Aβ42 immunization in Alzheimer’s disease generates Aβ N-terminal antibodies. Ann Neurol 58:430–435CrossRefPubMedGoogle Scholar
  40. 40.
    Orgogozo JM, Gilman S, Dartigues JF et al (2003) Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 61:46–54CrossRefPubMedGoogle Scholar
  41. 41.
    Vellas B, Black R, Thal LJ et al (2009) Long-term follow-up of patients immunized with AN1792: reduced functional decline in antibody responders. Curr Alzheimer Res 6:144–151CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Pride M, Seubert P, Grundman M et al (2008) Progress in the active immunotherapeutic approach to Alzheimer’s disease: clinical investigations into AN1792-associated meningoencephalitis. Neurodegener Dis 5:194–196CrossRefPubMedGoogle Scholar
  43. 43.
    Ferrer I, Rovira MB, Guerra MLS et al (2004) Neuropathology and pathogenesis of encephalitis following amyloid-β immunization in Alzheimer’s disease. Brain Pathol 14:11–20CrossRefPubMedGoogle Scholar
  44. 44.
    Fox NC, Black RS, Gilman S et al (2005) Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology 64:1563–1572CrossRefPubMedGoogle Scholar
  45. 45.
    Nicoll JAR, Wilkinson D, Homes C et al (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report. Nat Med 9:448–452CrossRefPubMedGoogle Scholar
  46. 46.
    Masliah E, Hansen L, Adame A et al (2005) Abeta vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology 64:129–131CrossRefPubMedGoogle Scholar
  47. 47.
    Holmes C, Boche D, Wilkinson D et al (2008) Long-term effects of Aβ42 immunization in Alzheimer’s disease: follow-up of a randomized, placebo-controlled phase 1 trial. Lancet 372:216–223CrossRefPubMedGoogle Scholar
  48. 48.
    Boche D, Denham N, Holmes C et al (2010) Neuropathology after active Aβ42 immunotherapy: implications for Alzheimer’s disease pathogenesis. Acta Neuropathol 120:369–384CrossRefPubMedGoogle Scholar
  49. 49.
    Serrano-Pozo A, William CM, Ferrer I et al (2010) Beneficial effect of human anti-amyloid-b active immunization on neurite morphology and tau pathology. Brain 133:1312–1327CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lobello K, Ryan JM, Liu E et al (2012) Targeting beta amyloid: a clinical review of immunotherapeutic approaches in Alzheimer’s disease. Int J Alzheimers Dis 2012:628070. doi: 10.1155/2012/628070
  51. 51.
    Winblad B, Graf A, Riviere ME et al (2014) Active immunotherapy options for Alzheimer’s disease. Alzheimers Res Ther 6:7CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Hagen M, Seubert P, Jacobsen S et al (2011) The Aβ peptide conjugate vaccine, Acc-001, generates N-terminal anti-Aβ antibodies in the absence of Aβ directed T-cell responses [abstract]. Alzheimers Dement 7:S460–S461CrossRefGoogle Scholar
  53. 53.
    Basi GS, Feinberg H, Oshidari F et al (2010) Structural correlates of antibodies associated with acute reversal of amyloid-related behavioral deficits in a mouse model of Alzheimer’s disease. J Biol Chem 285(5):3417–3427. doi: 10.1074/jbc.M109.045187 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Arai H, Suzuki H, Yoshiyama T (2015) Vanutide cridificar and the QS-21 adjuvant in Japanese subjects with mild to moderate Alzheimer’s disease: Results from two Phase 2 studies. Curr Alzheimer Res 12:242–254CrossRefPubMedGoogle Scholar
  55. 55.
    Sperling RA, Jack CR, Black SE et al (2011) Amyloid related imaging abnormalities (ARIA) in amyloid modifying therapeutic trials: recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimers Dement 7(4):367–385CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Margolin R, Ketter N, Guthrie S et al. (2013) Biomarker strategy for enrichment and assessment of biological effect in a Phase 2 study of ACC-001, an anti-Aβ vaccine for Alzheimer’s disease. Poster presentation. July 2013 AAIC Boston, MA USAGoogle Scholar
  57. 57.
    Salloway S, Sperling R, Gregg K et al. (2013) Characterization of the clinical course of placebo-treated amyloid-negative subjects with mild-moderate Alzheimer’s disease (AD): results from the Phase 3 PET sub-studies of bapineuzumab and solanezumab. Poster presentation. July 2013 AAIC Boston, MA USAGoogle Scholar
  58. 58.
    Ketter N, Liu E, Di J, et al (2014) A phase 2 randomized double-blind placebo-controlled study of Vanutide Cridificar vaccine (ACC-001) in patients with mild-to-moderate Alzheimer’s disease. Poster presentation at 7th Clinical Trials Conference on Alzheimer’s disease, Philadelphia, PA, November 20–22, 2014Google Scholar
  59. 59.
    Mucke L, Selkoe DJ (2012) Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med 2:a006338CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Schneeberger A, Mandler M, Otawa O et al (2009) Development of AFFITOPE vaccines for Alzheimer’s disease (AD) –from concept to clinical testing. J Nutr Health Aging 3:264–267CrossRefGoogle Scholar
  61. 61.
    Mandler M, Santic R, Gruber P et al (2015) Tailoring the antibody response to aggregated Aβ using novel Alzheimer vaccines. PLoS ONE. doi: 10.1371/journal.pone.0115237 Google Scholar
  62. 62.
    Mandler M, Santic R, Weninger H et al (2009) The MimoVax vaccine: a novel Alzheimer treatment strategy targeting truncated Aβ40/42 by active immunization [abstract]. Alzheimers Dement 5:114CrossRefGoogle Scholar
  63. 63.
    Muhs A, Hickman DT, Pihlgren M et al (2007) Liposomal vaccines with conformation-specific amyloid peptide antigens define immune response and efficacy in APP transgenic mice. PNAS 104(23):9810–9815CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Wiessner C, Wiederhold K-H, Tissot AC et al (2011) The second generation active Aβ immunotherapy CAD106 reduces amyloid accumulation in APP transgenic mice while minimizing potential side effects. J Neurosci 31(25):9323–9331CrossRefPubMedGoogle Scholar
  65. 65.
    Winblad B, Andreasen N, Minthon L et al (2012) Safety, tolerability, and antibody response of active Aβ immunotherapy with CAD106 in patients with Alzheimer’s disease: randomised, double-blind, placebo-controlled, first-in-human study. Lancet Neurol 11:597–604CrossRefPubMedGoogle Scholar
  66. 66.
    Farlow MR, Andreasen N, Riviere M-E et al (2015) Long-term treatment with active Aβ immunotherapy with CAD106 in mild Alzheimer’s disease. Alzheimers Res Ther 7:23. doi: 10.1186/s13195-015-0108-3 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Graf A, Riviere ME, Caputo A et al (2014) Active Aβ immunotherapy CAD106 Phase II dose-adjuvant finding study: safety and CNS biomarkers. Alzheimers Dement 10(4):274. doi: CrossRefGoogle Scholar
  68. 68.
    Davtyan H, Ghochikyan A, Petrushina I et al (2013) Immunogenicity, efficacy, safety, and mechanism of action of epitope vaccine (Lu AF20513) for Alzheimer’s disease: prelude to a clinical trial. J Neurosci 33:4923–4934CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Wang CY, Finstad CL, Walfield AM et al (2007) Site-specific UBITh amyloid-beta vaccine for immunotherapy of Alzheimer’s disease. Vaccine 25:3041–3052CrossRefPubMedGoogle Scholar
  70. 70.
    Savage MJ, Wu G, McCampbell A et al (2010) A novel multivalent Abeta peptide vaccine with preclinical evidence of a central immune response that generates antisera recognizing a wide range of Abeta peptide species. [abstract]. Alzheimers Dement 6(4):S142CrossRefGoogle Scholar
  71. 71.
    Cribbs DH (2010) Abeta DNA vaccination for Alzheimer’s disease: focus on disease prevention. CNS Neruol Disord Drug Targets 9(2):207–216CrossRefGoogle Scholar
  72. 72.
    Alves RPS, Yang MJ, Batista MT et al (2014) Alzheimer’s disease: is a vaccine possible? Braz J Med Biol Res 47(6):438–444CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Kudrna JJ, Ungen KE (2015) Gene-based vaccines and immunotherapeutic strategies against neurodegenerative diseases: Potential utility and limitations. Hum Vaccin Immunother 11(8):1921–1926CrossRefPubMedGoogle Scholar
  74. 74.
    Kutzler MA, Weiner DB (2008) DNA vaccines: ready for prime time? Nat Rev Genet 9(10):776–788CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Matsumoto Y, Niimi N, Kohyama K (2013) Development of a new DNA vaccine for Alzheimer’s disease targeting a wide range of Aβ species and amyloidogenic peptides. PLoS One e75203. doi: 10.1371/journal.pone.0075203
  76. 76.
    Lambracht-Washington D, Rosenberg RN (2012) Active DNA Aβ42 vaccination as immunotherapy for Alzheimer’s disease. Transl Neurosci 3(4):307–313CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Agadjanyan MG, Ghochikyan A, Petrushina I et al (2005) Prototype Alzheimer’s disease vaccine using the immunodominant B cell epitope from beta-amyloid and promiscuous T cell epitope pan HLA DR-binding peptide. J Immunol 174:1580–1586CrossRefPubMedGoogle Scholar
  78. 78.
    Movsesyan N, Ghochikyan A, Mkrtichyan M et al (2008) Reducing AD-like pathology in 3xTg-AD mouse model by DNA epitope vaccine – a novel immunotherapeutic strategy. PLoS One 3:e2124CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Guo W, Sha S, Jiang T, Xing X, Cao Y et al (2013) A new DNA vaccine fused with the C3d-p28 induces a Th2 immune response against amyloid-beta. Neural Regen Res 8(27):2581–2590PubMedPubMedCentralGoogle Scholar
  80. 80.
    Lambracht-Washington D, Qu B-X, Fu M et al (2013) A peptide prime-DNA boost immunization protocol provides significant benefits as a new generation Aβ42 DNA vaccine for Alzheimer’s disease. J Neuroimmunol 254:63–68CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Liu S, Shi DY, Wang HC et al (2014) Co-immunization with DNA and protein mixture: a safe and efficacious immunotherapeutic strategy for Alzheimer’s disease in PDAPP mice. Sci Rep 5:7771. doi: 10.1038/srep0777 CrossRefGoogle Scholar
  82. 82.
    Wang S, Yu Y, Geng S et al (2013) A coimmunization vaccine of Aβ42 ameliorates cognitive deficits without brain inflammation in an Alzheimer’s disease model. Alzheimers Res Ther 6:26CrossRefGoogle Scholar
  83. 83.
    Grubeck-Loebenstain B, Della Bella S, Iorio AM et al (2009) Immunosenescence and vaccine failure in the elderly. Aging Clin Exp Res 21:201–209CrossRefGoogle Scholar
  84. 84.
    Salloway S, Sperling R, Fox NC et al (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):322–33CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Doody RS, Thomas RG, Farlow M et al (2014) Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):311–21CrossRefPubMedGoogle Scholar
  86. 86.
    Sperling RA, Rentz DM, Johnson KA et al (2014) The A4 study: stopping AD before symptoms begin? Sci Transl Med 6(228):228fs13. doi: 10.1126/scitranslmed.3007941 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Mattsson N, Carrillo MC, Dean RA et al (2015) Revolutionizing Alzheimer’s disease and clinical trials through biomarkers. Alzheimers Dement (Amst) 1:412–419Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Prothena Biosciences, Inc.South San FranciscoUSA
  2. 2.Novartis Pharmaceuticals CorporationEast HanoverUSA

Personalised recommendations