Skip to main content

Active Immunization Against the Amyloid-β Peptide

  • Protocol
  • First Online:
Immunotherapy and Biomarkers in Neurodegenerative Disorders

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 889 Accesses

Abstract

Alzheimer’s disease (AD) has a devastating toll not only on the affected individuals but also on their families, caregivers, and society as a whole. Several therapies have been approved to treat AD, all of which provide modest effect on the symptoms of the illness but without slowing or halting the underlying disease processes. Since the last of these therapies was approved, the largest research effort has been devoted to developing therapies targeting amyloid-β, specifically Aβ42, as this protein is thought to initiate the cascade of events that lead to the disease. This chapter focuses on active immunotherapy (vaccines) and specifically on therapies that currently are in clinical development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bachman DL, Wolf PA, Linn R et al (1992) Prevalence of dementia and probable senile dementia of the Alzheimer type in the Framingham Study. Neurology 42:115–119

    Article  CAS  PubMed  Google Scholar 

  2. Rocca WA, Hofman A, Brayne C et al (1991) Frequency and distribution of Alzheimer’s disease in Europe: a collaborative study of 1980-1990 prevalence findings. Ann Neurol 30(3):381–390

    Article  CAS  PubMed  Google Scholar 

  3. Cummings JL, Cole G (2002) Alzheimer disease. JAMA 287:2335–2338

    Article  CAS  PubMed  Google Scholar 

  4. Cummings JL (2004) Alzheimer’s disease. N Engl J Med 351:56–67

    Article  CAS  PubMed  Google Scholar 

  5. Brookmeyer R, Johnson E, Zieger-Graham K et al (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3:186–191

    Article  PubMed  Google Scholar 

  6. Alzheimer’ s Association (2015) Alzheimer’s disease facts and figures. Alzheimers Dement 11(3):332

    Article  Google Scholar 

  7. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  8. Selkoe D (2011) Resolving controversies on the path to Alzheimer’s therapeutics. Nat Med 17(9):1060–1065

    Article  CAS  PubMed  Google Scholar 

  9. Citron M, Oltersdorf T, Haass C et al (1992) Mutation of the J-amyloid precursor protein in familial Alzheimer’s disease increases J-protein production. Nature 360:672–674

    Article  CAS  PubMed  Google Scholar 

  10. Scheuner D, Eckman C, Jensen M et al (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2:864–870

    Article  CAS  PubMed  Google Scholar 

  11. Citron M, Westaway D, Xia W et al (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nat Med 3(1):67–72

    Article  CAS  PubMed  Google Scholar 

  12. Mawuenyega K, Sigurdson W, Oyod V et al (2010) Decreased clearance of CNS beta amyloid in AD. Science 330(6012):1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Holtzman DM, Morris JC, Goate AM (2011) Alzheimer’s disease: the challenge of the second century. Sci Transl Med 3:77sr1

    PubMed  PubMed Central  Google Scholar 

  14. Bertram L, Tanzi RE (2012) The genetics of Alzheimer’s disease. Prog Mol Biol Transl Sci 107:79–100

    Article  CAS  PubMed  Google Scholar 

  15. Jonsson T, Atwal J, Steinberg S et al (2012) A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488:96–99

    Article  CAS  PubMed  Google Scholar 

  16. Grimmer T, Tholen S, Yousefi BH et al (2010) Progression of cerebral amyloid load is associated with the apolipoprotein E ε-4 genotype in Alzheimer’s disease. Biol Psychiatry 68:879–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Castellano JM, Kim JS, Stewart FR et al (2011) Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Science Translational Medicine 9(89):89ra57. doi:10.1126/scitranslmed.3002156

    Google Scholar 

  18. Caccamo A, Oddo S, Sugarman MC et al (2005) Age- and region-dependent alterations in Abeta-degrading enzymes: implications for Abeta-induced disorders. Neurobiol Aging 26(5):645–654

    Article  CAS  PubMed  Google Scholar 

  19. Jin M, Shepardson N, Yang T et al (2011) Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. PNAS 108(14):5819–5824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Braak H, Thal DR, Ghebremedhin E et al (2011) Stages of the pathologic process in Alzheimer’s disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70(11):960–969

    Article  CAS  PubMed  Google Scholar 

  21. Knapp MJ, Knopman DS, Solomon PR et al (1994) A 30-week randomized controlled trial of high-dose tacrine in patients with Alzheimer’s disease. The Tacrine Study Group. JAMA 271:985–991

    Article  CAS  PubMed  Google Scholar 

  22. Rogers SL, Doody RS, Mohs RC (1998) Donepezil improves cognition and global function in Alzheimer disease: a 15-week, double-blind, placebo-controlled study. Donepezil Study Group. Arch Intern Med 158:1021–1031

    Article  CAS  PubMed  Google Scholar 

  23. Trinh NH, Hoblyn J, Mohanty S et al (2003) Efficacy of cholinesterase inhibitors in the treatment of neuropsychiatric symptoms and functional impairment in Alzheimer disease. JAMA 289:210–216

    Article  CAS  PubMed  Google Scholar 

  24. Schneider L, Mangialasche F, Andreasen N et al (2014) Clinical trials and late-stage drug development for Alzheimer’s disease: an appraisal from 1984 to 2014. J Intern Med 275(3):251–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cummings JL, Morstorf T, Zhong K (2014) Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther 6:37

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schenk D, Barbour R, Dunn W et al (1999) Immunization with amyloid-β attenuates Alzheimer disease-like pathology in the PDAPP mouse. Nature 400:173–177

    Article  CAS  PubMed  Google Scholar 

  27. Town T (2009) Alternative Aβ immunotherapy approaches for Alzheimer’s disease. CNS Neurol Disord Drug Targets 8(2):114–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fu HJ, Liu B, Frost JL, Lemere CA (2010) Amyloid-β immunotherapy for Alzheimer’s disease. CNS Neurol Disord Drug Targets 9(2):197–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schenk D, Basi GS, Pangalos MN (2012) Treatment strategies targeting amyloid β-protein. Cold Spring Harb Perspect Med 2:a006387

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bard F, Cannon C, Barbour R et al (2000) Peripherally administered antibodies against amyloid β peptide enter the central nervous system and induce pathology in a mouse model of Alzheimer disease. Nature 6:916–919

    CAS  Google Scholar 

  31. Bacskai BJ, Hickey GA, Skoch J et al (2003) Four-dimensional multiphoton imaging of brain entry, amyloid binding, and clearance of an amyloid-beta ligand in transgenic mice. Proc Natl Acad Sci U S A 100(21):12462–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Games D, Adams D, Alessandrini R et al (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373:523–527

    Article  CAS  PubMed  Google Scholar 

  33. Wisniewski T, Boutajangout A (2010) Immunotherapeutic approaches for Alzheimer’s disease in transgenic mouse models. Brain Struct Funct 214:201–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schenk D, Hagen M, Seubert P (2004) Current progress in β-amyloid immunotherapy. Curr Opin Immunol 16:599–606

    Article  CAS  PubMed  Google Scholar 

  35. Shankar GM, Li S, Mehta TH et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14(8):837–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zago W, Buttini M, Comery TA et al (2012) Neutralization of soluble, synaptotoxic amyloid β species by antibodies is epitope specific. J Neurosci 32(8):2696–2702

    Article  CAS  PubMed  Google Scholar 

  37. Bayer A, Bullock R, Jones RW et al (2005) Evaluation of the safety and immunogenicity of synthetic Aβ42 (AN1792) in patients with AD. Neurology 64:94–101

    Article  CAS  PubMed  Google Scholar 

  38. Gilman S, Koller M, Black RSK et al (2005) Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64:1553–1562

    Article  CAS  PubMed  Google Scholar 

  39. Lee M, Bard F, Johnson-Wood K et al (2005) Aβ42 immunization in Alzheimer’s disease generates Aβ N-terminal antibodies. Ann Neurol 58:430–435

    Article  CAS  PubMed  Google Scholar 

  40. Orgogozo JM, Gilman S, Dartigues JF et al (2003) Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 61:46–54

    Article  CAS  PubMed  Google Scholar 

  41. Vellas B, Black R, Thal LJ et al (2009) Long-term follow-up of patients immunized with AN1792: reduced functional decline in antibody responders. Curr Alzheimer Res 6:144–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pride M, Seubert P, Grundman M et al (2008) Progress in the active immunotherapeutic approach to Alzheimer’s disease: clinical investigations into AN1792-associated meningoencephalitis. Neurodegener Dis 5:194–196

    Article  CAS  PubMed  Google Scholar 

  43. Ferrer I, Rovira MB, Guerra MLS et al (2004) Neuropathology and pathogenesis of encephalitis following amyloid-β immunization in Alzheimer’s disease. Brain Pathol 14:11–20

    Article  CAS  PubMed  Google Scholar 

  44. Fox NC, Black RS, Gilman S et al (2005) Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology 64:1563–1572

    Article  CAS  PubMed  Google Scholar 

  45. Nicoll JAR, Wilkinson D, Homes C et al (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report. Nat Med 9:448–452

    Article  CAS  PubMed  Google Scholar 

  46. Masliah E, Hansen L, Adame A et al (2005) Abeta vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology 64:129–131

    Article  CAS  PubMed  Google Scholar 

  47. Holmes C, Boche D, Wilkinson D et al (2008) Long-term effects of Aβ42 immunization in Alzheimer’s disease: follow-up of a randomized, placebo-controlled phase 1 trial. Lancet 372:216–223

    Article  CAS  PubMed  Google Scholar 

  48. Boche D, Denham N, Holmes C et al (2010) Neuropathology after active Aβ42 immunotherapy: implications for Alzheimer’s disease pathogenesis. Acta Neuropathol 120:369–384

    Article  CAS  PubMed  Google Scholar 

  49. Serrano-Pozo A, William CM, Ferrer I et al (2010) Beneficial effect of human anti-amyloid-b active immunization on neurite morphology and tau pathology. Brain 133:1312–1327

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lobello K, Ryan JM, Liu E et al (2012) Targeting beta amyloid: a clinical review of immunotherapeutic approaches in Alzheimer’s disease. Int J Alzheimers Dis 2012:628070. doi:10.1155/2012/628070

    Google Scholar 

  51. Winblad B, Graf A, Riviere ME et al (2014) Active immunotherapy options for Alzheimer’s disease. Alzheimers Res Ther 6:7

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hagen M, Seubert P, Jacobsen S et al (2011) The Aβ peptide conjugate vaccine, Acc-001, generates N-terminal anti-Aβ antibodies in the absence of Aβ directed T-cell responses [abstract]. Alzheimers Dement 7:S460–S461

    Article  Google Scholar 

  53. Basi GS, Feinberg H, Oshidari F et al (2010) Structural correlates of antibodies associated with acute reversal of amyloid-related behavioral deficits in a mouse model of Alzheimer’s disease. J Biol Chem 285(5):3417–3427. doi:10.1074/jbc.M109.045187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Arai H, Suzuki H, Yoshiyama T (2015) Vanutide cridificar and the QS-21 adjuvant in Japanese subjects with mild to moderate Alzheimer’s disease: Results from two Phase 2 studies. Curr Alzheimer Res 12:242–254

    Article  CAS  PubMed  Google Scholar 

  55. Sperling RA, Jack CR, Black SE et al (2011) Amyloid related imaging abnormalities (ARIA) in amyloid modifying therapeutic trials: recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimers Dement 7(4):367–385

    Article  PubMed  PubMed Central  Google Scholar 

  56. Margolin R, Ketter N, Guthrie S et al. (2013) Biomarker strategy for enrichment and assessment of biological effect in a Phase 2 study of ACC-001, an anti-Aβ vaccine for Alzheimer’s disease. Poster presentation. July 2013 AAIC Boston, MA USA

    Google Scholar 

  57. Salloway S, Sperling R, Gregg K et al. (2013) Characterization of the clinical course of placebo-treated amyloid-negative subjects with mild-moderate Alzheimer’s disease (AD): results from the Phase 3 PET sub-studies of bapineuzumab and solanezumab. Poster presentation. July 2013 AAIC Boston, MA USA

    Google Scholar 

  58. Ketter N, Liu E, Di J, et al (2014) A phase 2 randomized double-blind placebo-controlled study of Vanutide Cridificar vaccine (ACC-001) in patients with mild-to-moderate Alzheimer’s disease. Poster presentation at 7th Clinical Trials Conference on Alzheimer’s disease, Philadelphia, PA, November 20–22, 2014

    Google Scholar 

  59. Mucke L, Selkoe DJ (2012) Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med 2:a006338

    Article  PubMed  PubMed Central  Google Scholar 

  60. Schneeberger A, Mandler M, Otawa O et al (2009) Development of AFFITOPE vaccines for Alzheimer’s disease (AD) –from concept to clinical testing. J Nutr Health Aging 3:264–267

    Article  Google Scholar 

  61. Mandler M, Santic R, Gruber P et al (2015) Tailoring the antibody response to aggregated Aβ using novel Alzheimer vaccines. PLoS ONE. doi:10.1371/journal.pone.0115237

    Google Scholar 

  62. Mandler M, Santic R, Weninger H et al (2009) The MimoVax vaccine: a novel Alzheimer treatment strategy targeting truncated Aβ40/42 by active immunization [abstract]. Alzheimers Dement 5:114

    Article  Google Scholar 

  63. Muhs A, Hickman DT, Pihlgren M et al (2007) Liposomal vaccines with conformation-specific amyloid peptide antigens define immune response and efficacy in APP transgenic mice. PNAS 104(23):9810–9815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wiessner C, Wiederhold K-H, Tissot AC et al (2011) The second generation active Aβ immunotherapy CAD106 reduces amyloid accumulation in APP transgenic mice while minimizing potential side effects. J Neurosci 31(25):9323–9331

    Article  CAS  PubMed  Google Scholar 

  65. Winblad B, Andreasen N, Minthon L et al (2012) Safety, tolerability, and antibody response of active Aβ immunotherapy with CAD106 in patients with Alzheimer’s disease: randomised, double-blind, placebo-controlled, first-in-human study. Lancet Neurol 11:597–604

    Article  CAS  PubMed  Google Scholar 

  66. Farlow MR, Andreasen N, Riviere M-E et al (2015) Long-term treatment with active Aβ immunotherapy with CAD106 in mild Alzheimer’s disease. Alzheimers Res Ther 7:23. doi:10.1186/s13195-015-0108-3

    Article  PubMed  PubMed Central  Google Scholar 

  67. Graf A, Riviere ME, Caputo A et al (2014) Active Aβ immunotherapy CAD106 Phase II dose-adjuvant finding study: safety and CNS biomarkers. Alzheimers Dement 10(4):274. doi:http://dx.doi.org/10.1016/j.jalz.2014.04.448

    Article  Google Scholar 

  68. Davtyan H, Ghochikyan A, Petrushina I et al (2013) Immunogenicity, efficacy, safety, and mechanism of action of epitope vaccine (Lu AF20513) for Alzheimer’s disease: prelude to a clinical trial. J Neurosci 33:4923–4934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang CY, Finstad CL, Walfield AM et al (2007) Site-specific UBITh amyloid-beta vaccine for immunotherapy of Alzheimer’s disease. Vaccine 25:3041–3052

    Article  CAS  PubMed  Google Scholar 

  70. Savage MJ, Wu G, McCampbell A et al (2010) A novel multivalent Abeta peptide vaccine with preclinical evidence of a central immune response that generates antisera recognizing a wide range of Abeta peptide species. [abstract]. Alzheimers Dement 6(4):S142

    Article  Google Scholar 

  71. Cribbs DH (2010) Abeta DNA vaccination for Alzheimer’s disease: focus on disease prevention. CNS Neruol Disord Drug Targets 9(2):207–216

    Article  CAS  Google Scholar 

  72. Alves RPS, Yang MJ, Batista MT et al (2014) Alzheimer’s disease: is a vaccine possible? Braz J Med Biol Res 47(6):438–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kudrna JJ, Ungen KE (2015) Gene-based vaccines and immunotherapeutic strategies against neurodegenerative diseases: Potential utility and limitations. Hum Vaccin Immunother 11(8):1921–1926

    Article  PubMed  Google Scholar 

  74. Kutzler MA, Weiner DB (2008) DNA vaccines: ready for prime time? Nat Rev Genet 9(10):776–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Matsumoto Y, Niimi N, Kohyama K (2013) Development of a new DNA vaccine for Alzheimer’s disease targeting a wide range of Aβ species and amyloidogenic peptides. PLoS One e75203. doi:10.1371/journal.pone.0075203

    Google Scholar 

  76. Lambracht-Washington D, Rosenberg RN (2012) Active DNA Aβ42 vaccination as immunotherapy for Alzheimer’s disease. Transl Neurosci 3(4):307–313

    Article  PubMed  PubMed Central  Google Scholar 

  77. Agadjanyan MG, Ghochikyan A, Petrushina I et al (2005) Prototype Alzheimer’s disease vaccine using the immunodominant B cell epitope from beta-amyloid and promiscuous T cell epitope pan HLA DR-binding peptide. J Immunol 174:1580–1586

    Article  CAS  PubMed  Google Scholar 

  78. Movsesyan N, Ghochikyan A, Mkrtichyan M et al (2008) Reducing AD-like pathology in 3xTg-AD mouse model by DNA epitope vaccine – a novel immunotherapeutic strategy. PLoS One 3:e2124

    Article  PubMed  PubMed Central  Google Scholar 

  79. Guo W, Sha S, Jiang T, Xing X, Cao Y et al (2013) A new DNA vaccine fused with the C3d-p28 induces a Th2 immune response against amyloid-beta. Neural Regen Res 8(27):2581–2590

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lambracht-Washington D, Qu B-X, Fu M et al (2013) A peptide prime-DNA boost immunization protocol provides significant benefits as a new generation Aβ42 DNA vaccine for Alzheimer’s disease. J Neuroimmunol 254:63–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu S, Shi DY, Wang HC et al (2014) Co-immunization with DNA and protein mixture: a safe and efficacious immunotherapeutic strategy for Alzheimer’s disease in PDAPP mice. Sci Rep 5:7771. doi:10.1038/srep0777

    Article  Google Scholar 

  82. Wang S, Yu Y, Geng S et al (2013) A coimmunization vaccine of Aβ42 ameliorates cognitive deficits without brain inflammation in an Alzheimer’s disease model. Alzheimers Res Ther 6:26

    Article  CAS  Google Scholar 

  83. Grubeck-Loebenstain B, Della Bella S, Iorio AM et al (2009) Immunosenescence and vaccine failure in the elderly. Aging Clin Exp Res 21:201–209

    Article  Google Scholar 

  84. Salloway S, Sperling R, Fox NC et al (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):322–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Doody RS, Thomas RG, Farlow M et al (2014) Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):311–21

    Article  CAS  PubMed  Google Scholar 

  86. Sperling RA, Rentz DM, Johnson KA et al (2014) The A4 study: stopping AD before symptoms begin? Sci Transl Med 6(228):228fs13. doi:10.1126/scitranslmed.3007941

    Article  PubMed  PubMed Central  Google Scholar 

  87. Mattsson N, Carrillo MC, Dean RA et al (2015) Revolutionizing Alzheimer’s disease and clinical trials through biomarkers. Alzheimers Dement (Amst) 1:412–419

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enchi Liu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Liu, E., Ryan, J.M. (2016). Active Immunization Against the Amyloid-β Peptide. In: Ingelsson, M., Lannfelt, L. (eds) Immunotherapy and Biomarkers in Neurodegenerative Disorders. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3560-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3560-4_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3558-1

  • Online ISBN: 978-1-4939-3560-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics