Mass Spectrometry-Based Proteomics in Biomarker Discovery for Neurodegenerative Diseases

  • Sravani Musunuri
  • Ganna Shevchenko
  • Jonas BergquistEmail author
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Several neurodegenerative disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), Machado–Joseph disease (MJD), and amyotrophic lateral sclerosis (ALS) lead to disease-specific changes in the neuronal proteins. The usage of rapidly evolving proteomic technologies, such as mass spectrometry (MS), has opened new avenues to detect the changes in the protein expression in disease vs. control samples for understanding biochemical pathogenesis in neurodegenerative disorders. Efficient sample preparation is an integral part of a successful MS-based proteomics. Apart from the identification, quantification of the proteins is needed to investigate the alterations between proteome profiles from different sample sets. This chapter provides an overview of the sample collection, preparation, identification, and quantification of proteins using MS in the biomarker discovery for the neurodegenerative diseases.

Key words

Alzheimer’s disease Biological samples Mass spectrometry Neuroproteomics Parkinson’s disease Protein purification Sample preparation Separation techniques Qualitative analysis Quantitative analysis 



This research was supported by Uppsala Berzelii Technology Centre for Neurodiagnostics, with financing from the Swedish Governmental Agency for Innovation Systems and The Swedish Research Council 621-2011-4423. We acknowledge Dr. Denys Shevchenko for technical assistance with Fig. 4.


  1. 1.
    Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, Yan JX, Gooley AA, Hughes G, Humphery-Smith I, Williams KL, Hochstrasser DF (1996) From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Bio/Technology 14(1):61–65PubMedCrossRefGoogle Scholar
  2. 2.
    Wu CC, MacCoss MJ (2002) Shotgun proteomics: tools for the analysis of complex biological systems. Curr Opin Mol Ther 4(3):242–250PubMedGoogle Scholar
  3. 3.
    Li K (2011) Neuroproteomics: Deciphering Brain Function and Disorders. In: Li KW (ed) Neuroproteomics, vol 57, Neuromethods. Humana Press, New York, pp 3–9. doi: 10.1007/978-1-61779-111-6_1 CrossRefGoogle Scholar
  4. 4.
    neuroscience Tsf (2002) Brain facts: The society for neuroscience. The Society for Neuroscience, Washington, pp 4–5Google Scholar
  5. 5.
    Davidsson P, Sjogren M (2005) The use of proteomics in biomarker discovery in neurodegenerative diseases. Dis Markers 21(2):81–92PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Speers AE, Wu CC (2007) Proteomics of integral membrane proteins--theory and application. Chem Rev 107(8):3687–3714PubMedCrossRefGoogle Scholar
  7. 7.
    Bergquist J, Palmblad M, Wetterhall M, Hakansson P, Markides KE (2002) Peptide mapping of proteins in human body fluids using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mass Spectrom Rev 21(1):2–15. doi: 10.1002/mas.10016 PubMedCrossRefGoogle Scholar
  8. 8.
    Dahlin AP, Wetterhall M, Caldwell KD, Larsson A, Bergquist J, Hillered L, Hjort K (2010) Methodological aspects on microdialysis protein sampling and quantification in biological fluids: an in vitro study on human ventricular CSF. Anal Chem 82(11):4376–4385. doi: 10.1021/ac1007706 PubMedCrossRefGoogle Scholar
  9. 9.
    Ekegren T, Hanrieder J, Bergquist J (2008) Clinical perspectives of high-resolution mass spectrometry-based proteomics in neuroscience: exemplified in amyotrophic lateral sclerosis biomarker discovery research. J Mass Spectrom 43(5):559–571. doi: 10.1002/jms.1409 PubMedCrossRefGoogle Scholar
  10. 10.
    Raslan AA, Kee Y (2013) Tackling neurodegenerative diseases: animal models of Alzheimer’s disease and Parkinson’s disease. Genes Genom 35(4):425–440CrossRefGoogle Scholar
  11. 11.
    Bunger S, Roblick UJ, Habermann JK (2009) Comparison of five commercial extraction kits for subsequent membrane protein profiling. Cytotechnology 61(3):153–159. doi: 10.1007/s10616-009-9249-1 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Qoronfleh MW, Benton B, Ignacio R, Kaboord B (2003) Selective Enrichment of Membrane Proteins by Partition Phase Separation for Proteomic Studies. J Biomed Biotechnol 2003(4):249–255. doi: 10.1155/S1110724303209244 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Shevchenko G, Musunuri S, Wetterhall M, Bergquist J (2012) Comparison of extraction methods for the comprehensive analysis of mouse brain proteome using shotgun-based mass spectrometry. J Proteome Res 11(4):2441–2451. doi: 10.1021/pr201169q PubMedCrossRefGoogle Scholar
  14. 14.
    Wetterhall M, Shevchenko G, Artemenko K, Sjodin MO, Bergquist J (2011) Analysis of membrane and hydrophilic proteins simultaneously derived from the mouse brain using cloud-point extraction. Anal Bioanal Chem 400(9):2827–2836PubMedCrossRefGoogle Scholar
  15. 15.
    Loo RR, Dales N, Andrews PC (1994) Surfactant effects on protein structure examined by electrospray ionization mass spectrometry. Protein Sci 3(11):1975–1983PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666(1-2):105–117PubMedCrossRefGoogle Scholar
  17. 17.
    Manabe T, Miyamoto H, Inoue K, Nakatsu M, Arai M (1999) Separation of human cerebrospinal fluid proteins by capillary isoelectric focusing in the absence of denaturing agents. Electrophoresis 20(18):3677–3683PubMedCrossRefGoogle Scholar
  18. 18.
    Lai CC, Her GR (2000) Analysis of phospholipase A2 glycosylation patterns from venom of individual bees by capillary electrophoresis/electrospray ionization mass spectrometry using an ion trap mass spectrometer. Rapid Commun Mass Spectrom 14(21):2012–2018PubMedCrossRefGoogle Scholar
  19. 19.
    Ouyang J, Wang J, Deng R, Long Q, Wang X (2003) High-level expression, purification, and characterization of porcine somatotropin in Pichia pastoris. Protein Expr Purif 32(1):28–34PubMedCrossRefGoogle Scholar
  20. 20.
    Jiang L, He L, Fountoulakis M (2004) Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. J Chromatogr 1023(2):317–320CrossRefGoogle Scholar
  21. 21.
    Shevchenko G, Sjodin MO, Malmstrom D, Wetterhall M, Bergquist J (2010) Cloud-point extraction and delipidation of porcine brain proteins in combination with bottom-up mass spectrometry approaches for proteome analysis. J Proteome Res 9(8):3903–3911PubMedCrossRefGoogle Scholar
  22. 22.
    Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75(3):663–670PubMedCrossRefGoogle Scholar
  23. 23.
    Freeman WM, Hemby SE (2004) Proteomics for protein expression profiling in neuroscience. Neurochem Res 29(6):1065–1081PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bodzon-Kulakowska A, Bierczynska-Krzysik A, Dylag T, Drabik A, Suder P, Noga M, Jarzebinska J, Silberring J (2007) Methods for samples preparation in proteomic research. J Chromatogr B Anal Technol Biomed Life Sci 849(1-2):1–31CrossRefGoogle Scholar
  25. 25.
    Anderson NL, Anderson NG (1998) Proteome and proteomics: New technologies, new concepts, and new words. Electrophoresis 19(11):1853–1861PubMedCrossRefGoogle Scholar
  26. 26.
    Schutzer SE, Angel TE, Liu T, Schepmoes AA, Xie F, Bergquist J, Vecsei L, Zadori D, Camp DG 2nd, Holland BK, Smith RD, Coyle PK (2013) Gray matter is targeted in first-attack multiple sclerosis. PLoS One 8(9), e66117. doi: 10.1371/journal.pone.0066117 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Wetterhall M, Zuberovic A, Hanrieder J, Bergquist J (2010) Assessment of the partitioning capacity of high abundant proteins in human cerebrospinal fluid using affinity and immunoaffinity subtraction spin columns. J Chromatogr B Anal Technol Biomed Life Sci 878(19):1519–1530. doi: 10.1016/j.jchromb.2010.04.003 CrossRefGoogle Scholar
  28. 28.
    Ramstrom M, Zuberovic A, Gronwall C, Hanrieder J, Bergquist J, Hober S (2009) Development of affinity columns for the removal of high-abundance proteins in cerebrospinal fluid. Biotechnol Appl Biochem 52(Pt 2):159–166. doi: 10.1042/BA20080015 PubMedCrossRefGoogle Scholar
  29. 29.
    Ramstrom M, Hagman C, Mitchell JK, Derrick PJ, Hakansson P, Bergquist J (2005) Depletion of high-abundant proteins in body fluids prior to liquid chromatography fourier transform ion cyclotron resonance mass spectrometry. J Proteome Res 4(2):410–416. doi: 10.1021/pr049812a PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang J, Goodlett DR, Peskind ER, Quinn JF, Zhou Y, Wang Q, Pan C, Yi E, Eng J, Aebersold RH, Montine TJ (2005) Quantitative proteomic analysis of age-related changes in human cerebrospinal fluid. Neurobiol Aging 26(2):207–227PubMedCrossRefGoogle Scholar
  31. 31.
    Schutzer SE, Angel TE, Liu T, Schepmoes AA, Clauss TR, Adkins JN, Camp DG, Holland BK, Bergquist J, Coyle PK, Smith RD, Fallon BA, Natelson BH (2011) Distinct cerebrospinal fluid proteomes differentiate post-treatment Lyme disease from chronic fatigue syndrome. PLoS One 6(2), e17287. doi: 10.1371/journal.pone.0017287 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Schutzer SE, Liu T, Natelson BH, Angel TE, Schepmoes AA, Purvine SO, Hixson KK, Lipton MS, Camp DG, Coyle PK, Smith RD, Bergquist J (2010) Establishing the proteome of normal human cerebrospinal fluid. PLoS One 5(6), e10980. doi: 10.1371/journal.pone.0010980 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Sjodin MO, Bergquist J, Wetterhall M (2010) Mining ventricular cerebrospinal fluid from patients with traumatic brain injury using hexapeptide ligand libraries to search for trauma biomarkers. J Chromatogr B Anal Technol Biomed Life Sci 878(22):2003–2012. doi: 10.1016/j.jchromb.2010.05.036 CrossRefGoogle Scholar
  34. 34.
    Biringer RG, Amato H, Harrington MG, Fonteh AN, Riggins JN, Huhmer AF (2006) Enhanced sequence coverage of proteins in human cerebrospinal fluid using multiple enzymatic digestion and linear ion trap LC-MS/MS. Brief Funct Genomic Proteomic 5(2):144–153. doi: 10.1093/bfgp/ell026 PubMedCrossRefGoogle Scholar
  35. 35.
    Capelo JL, Carreira R, Diniz M, Fernandes L, Galesio M, Lodeiro C, Santos HM, Vale G (2009) Overview on modern approaches to speed up protein identification workflows relying on enzymatic cleavage and mass spectrometry-based techniques. Anal Chim Acta 650(2):151–159. doi: 10.1016/j.aca.2009.07.034 PubMedCrossRefGoogle Scholar
  36. 36.
    Hustoft HK, Reubsaet L, Greibrokk T, Lundanes E, Malerod H (2011) Critical assessment of accelerating trypsination methods. J Pharm Biomed Anal 56(5):1069–1078. doi: 10.1016/j.jpba.2011.08.013 PubMedCrossRefGoogle Scholar
  37. 37.
    Bao H, Liu T, Chen X, Chen G (2008) Efficient in-gel proteolysis accelerated by infrared radiation for protein identification. J Proteome Res 7(12):5339–5344. doi: 10.1021/pr800572e PubMedCrossRefGoogle Scholar
  38. 38.
    Pramanik BN, Mirza UA, Ing YH, Liu YH, Bartner PL, Weber PC, Bose AK (2002) Microwave-enhanced enzyme reaction for protein mapping by mass spectrometry: a new approach to protein digestion in minutes. Protein Sci 11(11):2676–2687. doi: 10.1110/ps.0213702 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Yamaguchi H, Miyazaki M, Honda T, Briones-Nagata MP, Arima K, Maeda H (2009) Rapid and efficient proteolysis for proteomic analysis by protease-immobilized microreactor. Electrophoresis 30(18):3257–3264. doi: 10.1002/elps.200900134 PubMedCrossRefGoogle Scholar
  40. 40.
    May C, Brosseron F, Chartowski P, Meyer HE, Marcus K (2012) Differential proteome analysis using 2D-DIGE. Methods Mol Biol 893:75–82. doi: 10.1007/978-1-61779-885-6_6 PubMedCrossRefGoogle Scholar
  41. 41.
    Wetterhall M, Palmblad M, Hakansson P, Markides KE, Bergquist J (2002) Rapid analysis of tryptically digested cerebrospinal fluid using capillary electrophoresis-electrospray ionization-Fourier transform ion cyclotron resonance-mass spectrometry. J Proteome Res 1(4):361–366PubMedCrossRefGoogle Scholar
  42. 42.
    Zuberovic A, Wetterhall M, Hanrieder J, Bergquist J (2009) CE MALDI-TOF/TOF MS for multiplexed quantification of proteins in human ventricular cerebrospinal fluid. Electrophoresis 30(10):1836–1843. doi: 10.1002/elps.200800714 PubMedCrossRefGoogle Scholar
  43. 43.
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926):64–71PubMedCrossRefGoogle Scholar
  44. 44.
    Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60(20):2299–2301PubMedCrossRefGoogle Scholar
  45. 45.
    Han X, Aslanian A, Yates JR 3rd (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12(5):483–490. doi: 10.1016/j.cbpa.2008.07.024 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Bergquist J (2003) FTICR mass spectrometry in proteomics. Curr Opin Mol Ther 5(3):310–314PubMedGoogle Scholar
  47. 47.
    Ekegren T, Hanrieder J, Aquilonius SM, Bergquist J (2006) Focused proteomics in post-mortem human spinal cord. J Proteome Res 5(9):2364–2371. doi: 10.1021/pr060237f PubMedCrossRefGoogle Scholar
  48. 48.
    Zuberovic A, Hanrieder J, Hellman U, Bergquist J, Wetterhall M (2008) Proteome profiling of human cerebrospinal fluid: exploring the potential of capillary electrophoresis with surface modified capillaries for analysis of complex biological samples. Eur J Mass Spectrom 14(4):249–260. doi: 10.1255/ejms.929 CrossRefGoogle Scholar
  49. 49.
    Hanrieder J, Ekegren T, Andersson M, Bergquist J (2013) MALDI imaging of post-mortem human spinal cord in amyotrophic lateral sclerosis. J Neurochem 124(5):695–707. doi: 10.1111/jnc.12019 PubMedCrossRefGoogle Scholar
  50. 50.
    Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1(5):252–262PubMedCrossRefGoogle Scholar
  51. 51.
    Bronstrup M (2004) Absolute quantification strategies in proteomics based on mass spectrometry. Expert Rev Proteomics 1(4):503–512PubMedCrossRefGoogle Scholar
  52. 52.
    Liu H, Sadygov RG, Yates JR 3rd (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76(14):4193–4201PubMedCrossRefGoogle Scholar
  53. 53.
    Oda Y, Huang K, Cross FR, Cowburn D, Chait BT (1999) Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci U S A 96(12):6591–6596PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Gouw JW, Krijgsveld J, Heck AJ (2010) Quantitative proteomics by metabolic labeling of model organisms. Mol Cell Proteomics 9(1):11–24. doi: 10.1074/mcp.R900001-MCP200 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Westman-Brinkmalm A, Abramsson A, Pannee J, Gang C, Gustavsson MK, von Otter M, Blennow K, Brinkmalm G, Heumann H, Zetterberg H (2011) SILAC zebrafish for quantitative analysis of protein turnover and tissue regeneration. J Proteome 75(2):425–434. doi: 10.1016/j.jprot.2011.08.008 CrossRefGoogle Scholar
  56. 56.
    Doherty MK, Whitehead C, McCormack H, Gaskell SJ, Beynon RJ (2005) Proteome dynamics in complex organisms: using stable isotopes to monitor individual protein turnover rates. Proteomics 5(2):522–533. doi: 10.1002/pmic.200400959 PubMedCrossRefGoogle Scholar
  57. 57.
    Kruger M, Moser M, Ussar S, Thievessen I, Luber CA, Forner F, Schmidt S, Zanivan S, Fassler R, Mann M (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134(2):353–364. doi: 10.1016/j.cell.2008.05.033 PubMedCrossRefGoogle Scholar
  58. 58.
    Ishihama Y, Sato T, Tabata T, Miyamoto N, Sagane K, Nagasu T, Oda Y (2005) Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards. Nat Biotechnol 23(5):617–621. doi: 10.1038/nbt1086 PubMedCrossRefGoogle Scholar
  59. 59.
    Xie F, Liu T, Qian WJ, Petyuk VA, Smith RD (2011) Liquid Chromatography-Mass Spectrometry-based Quantitative Proteomics. J Biol Chem 286(29):25443–25449PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C (2001) Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem 73(13):2836–2842PubMedCrossRefGoogle Scholar
  61. 61.
    Reynolds KJ, Yao X, Fenselau C (2002) Proteolytic 18O labeling for comparative proteomics: evaluation of endoprotease Glu-C as the catalytic agent. J Proteome Res 1(1):27–33PubMedCrossRefGoogle Scholar
  62. 62.
    Johnson KL, Muddiman DC (2004) A method for calculating 16O/18O peptide ion ratios for the relative quantification of proteomes. J Am Soc Mass Spectrom 15(4):437–445PubMedCrossRefGoogle Scholar
  63. 63.
    Ramos-Fernandez A, Lopez-Ferrer D, Vazquez J (2007) Improved method for differential expression proteomics using trypsin-catalyzed 18O labeling with a correction for labeling efficiency. Mol Cell Proteomics 6(7):1274–1286PubMedCrossRefGoogle Scholar
  64. 64.
    Fuvesi J, Hanrieder J, Bencsik K, Rajda C, Kovacs SK, Kaizer L, Beniczky S, Vecsei L, Bergquist J (2012) Proteomic analysis of cerebrospinal fluid in a fulminant case of multiple sclerosis. Int J Mol Sci 13(6):7676–7693. doi: 10.3390/ijms13067676 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Hanrieder J, Wetterhall M, Enblad P, Hillered L, Bergquist J (2009) Temporally resolved differential proteomic analysis of human ventricular CSF for monitoring traumatic brain injury biomarker candidates. J Neurosci Methods 177(2):469–478PubMedCrossRefGoogle Scholar
  66. 66.
    Karp NA, Huber W, Sadowski PG, Charles PD, Hester SV, Lilley KS (2010) Addressing accuracy and precision issues in iTRAQ quantitation. Mol Cell Proteomics 9(9):1885–1897. doi: 10.1074/mcp.M900628-MCP200 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Hsu JL, Huang SY, Chow NH, Chen SH (2003) Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 75(24):6843–6852PubMedCrossRefGoogle Scholar
  68. 68.
    Ji C, Guo N, Li L (2005) Differential dimethyl labeling of N-termini of peptides after guanidination for proteome analysis. J Proteome Res 4(6):2099–2108PubMedCrossRefGoogle Scholar
  69. 69.
    Musunuri S, Wetterhall M, Ingelsson M, Lannfelt L, Artemenko K, Bergquist J, Kultima K, Shevchenko G (2014) Quantification of the brain proteome in Alzheimer’s disease using multiplexed mass spectrometry. J Proteome Res 13(4):2056–2068. doi: 10.1021/pr401202d PubMedCrossRefGoogle Scholar
  70. 70.
    Sui P, Watanabe H, Ossipov MH, Porreca F, Bakalkin G, Bergquist J, Artemenko K (2013) Dimethyl-labeling-based protein quantification and pathway search: a novel method of spinal cord analysis applicable for neurological studies. J Proteome Res 12(5):2245–2252. doi: 10.1021/pr4001064 PubMedCrossRefGoogle Scholar
  71. 71.
    Elliott MH, Smith DS, Parker CE, Borchers C (2009) Current trends in quantitative proteomics. J Mass Spectrom 44(12):1637–1660PubMedGoogle Scholar
  72. 72.
    Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368(9533):387–403PubMedCrossRefGoogle Scholar
  73. 73.
    Henkel AW, Muller K, Lewczuk P, Muller T, Marcus K, Kornhuber J, Wiltfang J (2012) Multidimensional plasma protein separation technique for identification of potential Alzheimer’s disease plasma biomarkers: a pilot study. J Neural Transm 119(7):779–788PubMedCrossRefGoogle Scholar
  74. 74.
    Perrin RJ, Craig-Schapiro R, Malone JP, Shah AR, Gilmore P, Davis AE, Roe CM, Peskind ER, Li G, Galasko DR, Clark CM, Quinn JF, Kaye JA, Morris JC, Holtzman DM, Townsend RR, Fagan AM (2011) Identification and Validation of Novel Cerebrospinal Fluid Biomarkers for Staging Early Alzheimer’s Disease. PLoS One 6(1)Google Scholar
  75. 75.
    Yin GN, Lee HW, Cho JY, Suk K (2009) Neuronal pentraxin receptor in cerebrospinal fluid as a potential biomarker for neurodegenerative diseases. Brain Res 1265:158–170PubMedCrossRefGoogle Scholar
  76. 76.
    Thambisetty M, Simmons A, Velayudhan L, Hye A, Campbell J, Zhang Y, Wahlund LO, Westman E, Kinsey A, Guntert A, Proitsi P, Powell J, Causevic M, Killick R, Lunnon K, Lynham S, Broadstock M, Choudhry F, Howlett DR, Williams RJ, Sharp SI, Mitchelmore C, Tunnard C, Leung R, Foy C, O’Brien D, Breen G, Furney SJ, Ward M, Kloszewska I, Mecocci P, Soininen H, Tsolaki M, Vellas B, Hodges A, Murphy DGM, Parkins S, Richardson JC, Resnick SM, Ferrucci L, Wong DF, Zhou Y, Muehlboeck S, Evans A, Francis PT, Spenger C, Lovestone S (2010) Association of Plasma Clusterin Concentration With Severity, Pathology, and Progression in Alzheimer Disease. Arch Gen Psychiatry 67(7):739–748PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Song F, Poljak A, Smythe GA, Sachdev P (2009) Plasma biomarkers for mild cognitive impairment and Alzheimer’s disease. Brain Res Rev 61(2):69–80PubMedCrossRefGoogle Scholar
  78. 78.
    Musunuri S, Kultima K, Richard BC, Ingelsson M, Lannfelt L, Bergquist J, Shevchenko G (2014) Micellar extraction possesses a new advantage for the analysis of Alzheimer’s disease brain proteome. Anal Bioanal Chem. doi: 10.1007/s00216-014-8320-8 PubMedGoogle Scholar
  79. 79.
    Andreev VP, Petyuk VA, Brewer HM, Karpievitch YV, Xie F, Clarke J, Camp D, Smith RD, Lieberman AP, Albin RL, Nawaz Z, El Hokayem J, Myers AJ (2012) Label-Free Quantitative LC-MS Proteomics of Alzheimer’s Disease and Normally Aged Human Brains. J Proteome Res 11(6):3053–3067PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Donovan LE, Higginbotham L, Dammer EB, Gearing M, Rees HD, Xia QW, Duong DM, Seyfried NT, Lah JJ, Levey AI (2012) Analysis of a membrane-enriched proteome from postmortem human brain tissue in Alzheimer’s disease. Proteom Clin Appl 6(3-4):201–211CrossRefGoogle Scholar
  81. 81.
    Chen S, Lu FF, Seeman P, Liu F (2012) Quantitative Proteomic Analysis of Human Substantia Nigra in Alzheimer’s Disease, Huntington’s Disease and Multiple Sclerosis. Neurochem Res 37(12):2805–2813PubMedCrossRefGoogle Scholar
  82. 82.
    Pannee J, Portelius E, Oppermann M, Atkins A, Hornshaw M, Zegers I, Hojrup P, Minthon L, Hansson O, Zetterberg H, Blennow K, Gobom J (2013) A Selected Reaction Monitoring (SRM)-Based Method for Absolute Quantification of A beta(38), A beta(40), and A beta(42) in Cerebrospinal Fluid of Alzheimer’s Disease Patients and Healthy Controls. J Alzheimers Dis 33(4):1021–1032PubMedGoogle Scholar
  83. 83.
    Han SH, Kim JS, Lee Y, Choi H, Kim JW, Na DL, Yang EG, Yu MH, Hwang D, Lee C, Mook-Jung I (2014) Both Targeted Mass Spectrometry and Flow Sorting Analysis Methods Detected the Decreased Serum Apolipoprotein E Level in Alzheimer’s Disease Patients. Mol Cell Proteomics 13(2):407–419PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Choi YS, Hou SY, Choe LH, Lee KH (2013) Targeted human cerebrospinal fluid proteomics for the validation of multiple Alzheimer’s disease biomarker candidates. J Chromatogr B 930:129–135CrossRefGoogle Scholar
  85. 85.
    Brinkmalm G, Brinkmalm A, Bourgeois P, Persson R, Hansson O, Portelius E, Mercken M, Andreasson U, Parent S, Lipari F, Ohrfelt A, Bjerke M, Minthon L, Zetterberg H, Blennow K, Nutu M (2013) Soluble amyloid precursor protein alpha and beta in CSF in Alzheimer’s disease. Brain Res 1513:117–126PubMedCrossRefGoogle Scholar
  86. 86.
    Portelius E, Bogdanovic N, Gustavsson MK, Volkmann I, Brinkmalm G, Zetterberg H, Winblad B, Blennow K (2011) Mass spectrometric characterization of brain amyloid beta isoform signatures in familial and sporadic Alzheimer’s disease. Acta Neuropathol 120(2):185–193CrossRefGoogle Scholar
  87. 87.
    Thorsell A, Bjerke M, Gobom J, Brunhage E, Vanmechelen E, Andreasen N, Hansson O, Minthon L, Zetterberg H, Blennow K (2010) Neurogranin in cerebrospinal fluid as a marker of synaptic degeneration in Alzheimer’s disease. Brain Res 1362:13–22PubMedCrossRefGoogle Scholar
  88. 88.
    Olanow CW, Prusiner SB (2009) Is Parkinson’s disease a prion disorder? Proc Natl Acad Sci U S A 106(31):12571–12572PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Alberio T, Bucci EM, Natale M, Bonino D, Di Giovanni M, Bottacchi E, Fasano M (2013) Parkinson’s disease plasma biomarkers: An automated literature analysis followed by experimental validation. J Proteome 90:107–114CrossRefGoogle Scholar
  90. 90.
    Maarouf CL, Beach TG, Adler CH, Shill HA, Sabbagh MN, Wu T, Walker DG, Kokjohn TA, Roher AE (2012) Cerebrospinal fluid biomarkers of neuropathologically diagnosed Parkinson’s disease subjects. Neurol Res 34(7):669–676PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Zhao X, Xiao WZ, Pu XP, Zhong LJ (2010) Proteome analysis of the sera from Chinese Parkinson’s disease patients. Neurosci Lett 479(2):175–179PubMedCrossRefGoogle Scholar
  92. 92.
    Arguelles S, Venero JL, Garcia-Rodriguez S, Tomas-Camardiel M, Ayala A, Cano J, Machado A (2010) Use of haptoglobin and transthyretin as potential biomarkers for the preclinical diagnosis of Parkinson’s disease. Neurochem Int 57(3):227–234PubMedCrossRefGoogle Scholar
  93. 93.
    Zhang XP, Yin XF, Yu HH, Liu XH, Yang FY, Yao J, Jin H, Yang PY (2012) Quantitative proteomic analysis of serum proteins in patients with Parkinson’s disease using an isobaric tag for relative and absolute quantification labeling, two-dimensional liquid chromatography, and tandem mass spectrometry. Analyst 137(2):490–495PubMedCrossRefGoogle Scholar
  94. 94.
    Guo JG, Sun ZW, Xiao SF, Liu DP, Jin GH, Wang ES, Zhou JN, Zhou JW (2009) Proteomic analysis of the cerebrospinal fluid of Parkinson’s disease patients. Cell Res 19(12):1401–1403PubMedCrossRefGoogle Scholar
  95. 95.
    Ohrfelt A, Zetterberg H, Andersson K, Persson R, Secic D, Brinkmalm G, Wallin A, Mulugeta E, Francis PT, Vanmechelen E, Aarsland D, Ballard C, Blennow K, Westman-Brinkmalm A (2012) Identification of Novel alpha-Synuclein Isoforms in Human Brain Tissue by using an Online NanoLC-ESI-FTICR-MS Method. Neurochem Res 36(11):2029–2042CrossRefGoogle Scholar
  96. 96.
    Lehnert S, Jesse S, Rist W, Steinacker P, Soininen H, Herukka SK, Tumani H, Lenter M, Oeckl P, Ferger B, Hengerer B, Otto M (2012) iTRAQ and multiple reaction monitoring as proteomic tools for biomarker search in cerebrospinal fluid of patients with Parkinson’s disease dementia. Exp Neurol 234(2):499–505PubMedCrossRefGoogle Scholar
  97. 97.
    Hong Z, Shi M, Chung KA, Quinn JF, Peskind ER, Galasko D, Jankovic J, Zabetian CP, Leverenz JB, Baird G, Montine TJ, Hancock AM, Hwang H, Pan C, Bradner J, Kang UJ, Jensen PH, Zhang J (2010) DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 133:713–726PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Vermachova M, Purkrtova Z, Santrucek J, Jolivet P, Chardot T, Kodicek M (2011) New protein isoforms identified within Arabidopsis thaliana seed oil bodies combining chymotrypsin/trypsin digestion and peptide fragmentation analysis. Proteomics 11(16):3430–3434. doi: 10.1002/pmic.201000603 PubMedCrossRefGoogle Scholar
  99. 99.
    Mizutani Y, Tsuge S, Shiogama K, Shimomura R, Kamoshida S, Inada K, Tsutsumi Y (2009) Enzyme-labeled antigen method: histochemical detection of antigen-specific antibody-producing cells in tissue sections of rats immunized with horseradish peroxidase, ovalbumin, or keyhole limpet hemocyanin. J histochem Cytochem 57(2):101–111. doi: 10.1369/jhc.2008.952259 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Langeveld JP, Wang JJ, Van de Wiel DF, Shih GC, Garssen GJ, Bossers A, Shih JC (2003) Enzymatic degradation of prion protein in brain stem from infected cattle and sheep. J Infect Dis 188(11):1782–1789. doi: 10.1086/379664 PubMedCrossRefGoogle Scholar
  101. 101.
    Waxdal MJ (1971) Selective cleavage of proteins. J Agric Food Chem 19(4):632–637PubMedCrossRefGoogle Scholar
  102. 102.
    Witkop B, Ramachandran K (1964) Progress in Non-Enzymatic Selective Modification and Cleavage of Proteins. Metab Clin Exp 13(SUPPL):1016–1025PubMedCrossRefGoogle Scholar
  103. 103.
    Chang RYK, Nouwens AS, Dodd PR, Etheridge N (2013) The synaptic proteome in Alzheimer’s disease. Alzheimers Dement 9(5):499–511PubMedCrossRefGoogle Scholar
  104. 104.
    McAvoy T, Lassman ME, Spellman DS, Ke Z, Howell BJ, Wong O, Zhu L, Tanen M, Struyk A, Laterza OF (2013) Quantification of tau in cerebrospinal fluid by immunoaffinity enrichment and tandem mass spectrometry. Clin Chem 60(4):683–689CrossRefGoogle Scholar
  105. 105.
    Zhou JY, Jones DR, Duong DM, Levey AI, Lah JJ, Peng JM (2013) Proteomic analysis of postsynaptic density in Alzheimer’s Disease. Clin Chim Acta 420:62–68PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Wang ES, Yao HB, Chen YH, Wang G, Gao WW, Sun YR, Guo JG, Hu JW, Jiang CC, Hu J (2013) Proteomic Analysis of the Cerebrospinal Fluid of Parkinson’s Disease Patients Pre- and Post-Deep Brain Stimulation. Cell Physiol Biochem 31(4-5):625–637PubMedCrossRefGoogle Scholar
  107. 107.
    Chen HM, Lin CY, Wang V (2011) Amyloid P component as a plasma marker for Parkinson’s disease identified by a proteomic approach. Clin Biochem 44(5-6):377–385PubMedCrossRefGoogle Scholar
  108. 108.
    Li YH, Wang JA, Zheng XL, Zhang YL, Li X, Yu S, He X, Chan P (2011) Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Combined with Magnetic Beads for Detecting Serum Protein Biomarkers in Parkinson’s Disease. Eur Neurol 65(2):105–111PubMedCrossRefGoogle Scholar
  109. 109.
    Wang ES, Sun Y, Guo JG, Gao X, Hu JW, Zhou L, Hu J, Jiang CC (2011) Tetranectin and apolipoprotein A-I in cerebrospinal fluid as potential biomarkers for Parkinson’s disease. Acta Neurol Scand 122(5):350–359Google Scholar
  110. 110.
    Chen Y, Yu G, Tu WB, Long HC, Jiang SD, Wan JC, Peng GG (2010) Cerebrospinal fluid diagnostic markers for two-dimensional electrophoresis-mass spectrometry in Parkinson’s disease patients. Neural Regen Res 5(12):890–894Google Scholar
  111. 111.
    Sinha A, Srivastava N, Singh S, Singh AK, Bhushan S, Shukla R, Singh MP (2009) Identification of differentially displayed proteins in cerebrospinal fluid of Parkinson’s disease patients: A proteomic approach. Clin Chim Acta 400(1-2):14–20PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sravani Musunuri
    • 1
  • Ganna Shevchenko
    • 1
  • Jonas Bergquist
    • 1
    Email author
  1. 1.Analytical Chemistry, Department of Chemistry-BMCSciLifeLab Uppsala UniversityUppsalaSweden

Personalised recommendations