Imaging as a Diagnostic Tool in Parkinson’s Disease

  • Johan WikströmEmail author
  • Torsten Danfors
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Magnetic resonance imaging (MRI) and nuclear imaging techniques are complementary methods to visualize biological changes on a morphological as well as a molecular level. Together they are useful tools to establish an early diagnosis of Parkinson’s disease (PD) and to differentiate between PD and other neurodegenerative disorders. Magnetic resonance imaging has the advantage of having a superior spatial resolution and being more widely available. The method could support the diagnosis of PD by detecting volume loss in specific regions, e.g., substantia nigra (SN), but also by unraveling functional changes associated with PD, such as decreased activation of motor regions by motor activating tasks, decreased white matter integrity, and metabolic changes in certain brain regions. Nuclear medicine imaging techniques, such as positron emission tomography (PET) and single photon emitted tomography (SPECT), can be used to detect dopamine deficiency, functional metabolic neuronal impairments and pathological accumulation of certain proteins in the nervous system. Similar to MRI, both PET and SPECT may also be used to aid in the differential diagnosis between Parkinson’s disease and other parkinsonian syndromes.

Key words

Magnetic resonance imaging MRI Parkinson’s disease Magnetic resonance spectroscopy Functional MRI Resting state functional MRI Diffusion weighted imaging Diffusion tensor imaging Magnetic transfer imaging PET SPECT Dopamine transporter PE2I FDG Amyloid Tau Alpha-synuclein 





Positron emission tomography


Dopamine transporter


Single photon emitted computed tomography


Normal pressure hydrocephalus


Vascular parkinsonism


Multiple system atrophy


Parkinson’s disease


Corticobasal degeneration


  1. 1.
    Adachi M, Hosoya T, Haku T et al (1999) Evaluation of the substantia nigra in patients with Parkinsonian syndrome accomplished using multishot diffusion-weighted MR imaging. AJNR Am J Neuroradiol 20(8):1500–1506PubMedGoogle Scholar
  2. 2.
    Wolff SD, Balaban RS (1989) Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 10(1):135–144PubMedCrossRefGoogle Scholar
  3. 3.
    Pujol J, Junque C, Vendrell P et al (1992) Reduction of the substantia nigra width and motor decline in aging and Parkinson’s disease. Arch Neurol 49(11):1119–1122PubMedCrossRefGoogle Scholar
  4. 4.
    Oikawa H, Sasaki M, Tamakawa Y et al (2002) The substantia nigra in Parkinson disease: proton density-weighted spin-echo and fast short inversion time inversion-recovery MR findings. AJNR Am J Neuroradiol 23(10):1747–1756PubMedGoogle Scholar
  5. 5.
    Geng DY, Li YX, Zee CS (2006) Magnetic resonance imaging-based volumetric analysis of basal ganglia nuclei and substantia nigra in patients with Parkinson’s disease. Neurosurgery 58(2):256–262. doi: 10.1227/01.NEU.0000194845.19462.7B, discussion 256-262PubMedCrossRefGoogle Scholar
  6. 6.
    Gorell JM, Ordidge RJ, Brown GG et al (1995) Increased iron-related MRI contrast in the substantia nigra in Parkinson’s disease. Neurology 45(6):1138–1143PubMedCrossRefGoogle Scholar
  7. 7.
    Graham JM, Paley MN, Grunewald RA et al (2000) Brain iron deposition in Parkinson’s disease imaged using the PRIME magnetic resonance sequence. Brain 123(Pt 12):2423–2431PubMedCrossRefGoogle Scholar
  8. 8.
    Martin WR (2009) Quantitative estimation of regional brain iron with magnetic resonance imaging. Parkinsonism Relat Disord 15(Suppl 3):S215–S218. doi: 10.1016/S1353-8020(09)70818-1 PubMedCrossRefGoogle Scholar
  9. 9.
    Morgen K, Sammer G, Weber L et al (2011) Structural brain abnormalities in patients with Parkinson disease: a comparative voxel-based analysis using T1-weighted MR imaging and magnetization transfer imaging. AJNR Am J Neuroradiol 32(11):2080–2086. doi: 10.3174/ajnr.A2837 PubMedCrossRefGoogle Scholar
  10. 10.
    Menke RA, Scholz J, Miller KL et al (2009) MRI characteristics of the substantia nigra in Parkinson’s disease: a combined quantitative T1 and DTI study. Neuroimage 47(2):435–441. doi: 10.1016/j.neuroimage.2009.05.017 PubMedCrossRefGoogle Scholar
  11. 11.
    Peran P, Cherubini A, Assogna F et al (2010) Magnetic resonance imaging markers of Parkinson’s disease nigrostriatal signature. Brain 133(11):3423–3433. doi: 10.1093/brain/awq212 PubMedCrossRefGoogle Scholar
  12. 12.
    Rolheiser TM, Fulton HG, Good KP et al (2011) Diffusion tensor imaging and olfactory identification testing in early-stage Parkinson’s disease. J Neurol 258(7):1254–1260. doi: 10.1007/s00415-011-5915-2 PubMedCrossRefGoogle Scholar
  13. 13.
    Chan LL, Rumpel H, Yap K et al (2007) Case control study of diffusion tensor imaging in Parkinson’s disease. J Neurol Neurosurg Psychiatry 78(12):1383–1386. doi: 10.1136/jnnp.2007.121525 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Vaillancourt DE, Spraker MB, Prodoehl J et al (2009) High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology 72(16):1378–1384. doi: 10.1212/01.wnl.0000340982.01727.6e PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Yoshikawa K, Nakata Y, Yamada K et al (2004) Early pathological changes in the parkinsonian brain demonstrated by diffusion tensor MRI. J Neurol Neurosurg Psychiatry 75(3):481–484PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Du G, Lewis MM, Styner M et al (2011) Combined R2* and diffusion tensor imaging changes in the substantia nigra in Parkinson’s disease. Mov Disord 26(9):1627–1632. doi: 10.1002/mds.23643 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Focke NK, Helms G, Pantel PM et al (2011) Differentiation of typical and atypical Parkinson syndromes by quantitative MR imaging. AJNR Am J Neuroradiol 32(11):2087–2092. doi: 10.3174/ajnr.A2865 PubMedCrossRefGoogle Scholar
  18. 18.
    Xia CF, Arteaga J, Chen G et al (2013) [(18)F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement 9(6):666–676. doi: 10.1016/j.jalz.2012.11.008 PubMedCrossRefGoogle Scholar
  19. 19.
    Zhan W, Kang GA, Glass GA et al (2012) Regional alterations of brain microstructure in Parkinson’s disease using diffusion tensor imaging. Mov Disord 27(1):90–97. doi: 10.1002/mds.23917 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Choe BY, Park JW, Lee KS et al (1998) Neuronal laterality in Parkinson’s disease with unilateral symptom by in vivo 1H magnetic resonance spectroscopy. Invest Radiol 33(8):450–455PubMedCrossRefGoogle Scholar
  21. 21.
    Hattingen E, Magerkurth J, Pilatus U et al (2009) Phosphorus and proton magnetic resonance spectroscopy demonstrates mitochondrial dysfunction in early and advanced Parkinson’s disease. Brain 132(Pt 12):3285–3297. doi: 10.1093/brain/awp293 PubMedCrossRefGoogle Scholar
  22. 22.
    Lucetti C, Del Dotto P, Gambaccini G et al (2007) Influences of dopaminergic treatment on motor cortex in Parkinson disease: a MRI/MRS study. Mov Disord 22(15):2170–2175. doi: 10.1002/mds.21576 PubMedCrossRefGoogle Scholar
  23. 23.
    Abe K, Terakawa H, Takanashi M et al (2000) Proton magnetic resonance spectroscopy of patients with parkinsonism. Brain Res Bull 52(6):589–595PubMedCrossRefGoogle Scholar
  24. 24.
    Griffith HR, Okonkwo OC, O’Brien T et al (2008) Reduced brain glutamate in patients with Parkinson’s disease. NMR Biomed 21(4):381–387. doi: 10.1002/nbm.1203 PubMedCrossRefGoogle Scholar
  25. 25.
    Heerschap AZ, J.; de Koster, A.; Thijssen,H; Horstink, M Metabolite levels at three brain locations in parkinsonism as viewed by proton MRS. In: SMRM, 12th Annual Meeting, New York, 1993. p 234Google Scholar
  26. 26.
    Guevara CA, Blain CR, Stahl D et al (2010) Quantitative magnetic resonance spectroscopic imaging in Parkinson’s disease, progressive supranuclear palsy and multiple system atrophy. Eur J Neurol 17(9):1193–1202. doi: 10.1111/j.1468-1331.2010.03010.x PubMedCrossRefGoogle Scholar
  27. 27.
    Weiduschat N, Mao X, Beal MF et al (2013) Usefulness of proton and phosphorus MR spectroscopic imaging for early diagnosis of Parkinson’s disease. J Neuroimaging. doi: 10.1111/jon.12074 PubMedGoogle Scholar
  28. 28.
    Helmich RC, Derikx LC, Bakker M et al (2010) Spatial remapping of cortico-striatal connectivity in Parkinson’s disease. Cereb Cortex 20(5):1175–1186. doi: 10.1093/cercor/bhp178 PubMedCrossRefGoogle Scholar
  29. 29.
    Palmer SJ, Li J, Wang ZJ et al (2010) Joint amplitude and connectivity compensatory mechanisms in Parkinson’s disease. Neuroscience 166(4):1110–1118. doi: 10.1016/j.neuroscience.2010.01.012 PubMedCrossRefGoogle Scholar
  30. 30.
    Wu T, Wang L, Chen Y et al (2009) Changes of functional connectivity of the motor network in the resting state in Parkinson’s disease. Neurosci Lett 460(1):6–10. doi: 10.1016/j.neulet.2009.05.046 PubMedCrossRefGoogle Scholar
  31. 31.
    Sabatini U, Boulanouar K, Fabre N et al (2000) Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain 123(Pt 2):394–403PubMedCrossRefGoogle Scholar
  32. 32.
    Watanabe H, Saito Y, Terao S et al (2002) Progression and prognosis in multiple system atrophy: an analysis of 230 Japanese patients. Brain 125(Pt 5):1070–1083PubMedCrossRefGoogle Scholar
  33. 33.
    Kato N, Arai K, Hattori T (2003) Study of the rostral midbrain atrophy in progressive supranuclear palsy. J Neurol Sci 210(1-2):57–60PubMedCrossRefGoogle Scholar
  34. 34.
    Gama RL, Tavora DF, Bomfim RC et al (2010) Morphometry MRI in the differential diagnosis of parkinsonian syndromes. Arq Neuropsiquiatr 68(3):333–338PubMedCrossRefGoogle Scholar
  35. 35.
    Quattrone A, Nicoletti G, Messina D et al (2008) MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy. Radiology 246(1):214–221. doi: 10.1148/radiol.2453061703 PubMedCrossRefGoogle Scholar
  36. 36.
    Groger A, Bender B, Wurster I et al (2013) Differentiation between idiopathic and atypical parkinsonian syndromes using three-dimensional magnetic resonance spectroscopic imaging. J Neurol Neurosurg Psychiatry 84(6):644–649. doi: 10.1136/jnnp-2012-302699 PubMedCrossRefGoogle Scholar
  37. 37.
    Koyama M, Yagishita A, Nakata Y et al (2007) Imaging of corticobasal degeneration syndrome. Neuroradiology 49(11):905–912. doi: 10.1007/s00234-007-0265-6 PubMedCrossRefGoogle Scholar
  38. 38.
    Zijlmans JC (2010) The role of imaging in the diagnosis of vascular parkinsonism. Neuroimaging Clin N Am 20(1):69–76. doi: 10.1016/j.nic.2009.08.006 PubMedCrossRefGoogle Scholar
  39. 39.
    Hughes AJ, Daniel SE, Ben-Shlomo Y et al (2002) The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 125(Pt 4):861–870PubMedCrossRefGoogle Scholar
  40. 40.
    Hughes AJ, Daniel SE, Lees AJ (2001) Improved accuracy of clinical diagnosis of Lewy body Parkinson’s disease. Neurology 57(8):1497–1499PubMedCrossRefGoogle Scholar
  41. 41.
    Benitez-Rivero S, Marin-Oyaga VA, Garcia-Solis D et al (2013) Clinical features and 123I-FP-CIT SPECT imaging in vascular parkinsonism and Parkinson’s disease. J Neurol Neurosurg Psychiatry 84(2):122–129. doi: 10.1136/jnnp-2012-302618 PubMedCrossRefGoogle Scholar
  42. 42.
    Fernandez HH, Wu CK, Ott BR (2003) Pharmacotherapy of dementia with Lewy bodies. Expert Opin Pharmacother 4(11):2027–2037. doi: 10.1517/14656566.4.11.2027 PubMedCrossRefGoogle Scholar
  43. 43.
    Filippi L, Manni C, Pierantozzi M et al (2005) 123I-FP-CIT semi-quantitative SPECT detects preclinical bilateral dopaminergic deficit in early Parkinson’s disease with unilateral symptoms. Nucl Med Commun 26(5):421–426PubMedCrossRefGoogle Scholar
  44. 44.
    Booij J, Knol RJ (2007) SPECT imaging of the dopaminergic system in (premotor) Parkinson’s disease. Parkinsonism Relat Disord 13(Suppl 3):S425–S428. doi: 10.1016/S1353-8020(08)70042-7 PubMedCrossRefGoogle Scholar
  45. 45.
    Marek KL, Seibyl JP, Zoghbi SS et al (1996) [123I] beta-CIT/SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson’s disease. Neurology 46(1):231–237PubMedCrossRefGoogle Scholar
  46. 46.
    Marek K, Innis R, van Dyck C et al (2001) [123I]beta-CIT SPECT imaging assessment of the rate of Parkinson’s disease progression. Neurology 57(11):2089–2094PubMedCrossRefGoogle Scholar
  47. 47.
    Benamer TS, Patterson J, Grosset DG et al (2000) Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord 15(3):503–510PubMedCrossRefGoogle Scholar
  48. 48.
    Hamilton D, List A, Butler T et al (2006) Discrimination between parkinsonian syndrome and essential tremor using artificial neural network classification of quantified DaTSCAN data. Nucl Med Commun 27(12):939–944. doi: 10.1097/01.mnm.0000243369.80765.24 PubMedCrossRefGoogle Scholar
  49. 49.
    Kemp PM, Hoffmann SA, Holmes C et al (2005) The contribution of statistical parametric mapping in the assessment of precuneal and medial temporal lobe perfusion by 99mTc-HMPAO SPECT in mild Alzheimer’s and Lewy body dementia. Nucl Med Commun 26(12):1099–1106PubMedCrossRefGoogle Scholar
  50. 50.
    Kung HF, Alavi A, Chang W et al (1990) In vivo SPECT imaging of CNS D-2 dopamine receptors: initial studies with iodine-123-IBZM in humans. J Nucl Med 31(5):573–579PubMedGoogle Scholar
  51. 51.
    Ehrin E, Farde L, de Paulis T et al (1985) Preparation of 11C-labelled Raclopride, a new potent dopamine receptor antagonist: preliminary PET studies of cerebral dopamine receptors in the monkey. Int J Appl Radiat Isot 36(4):269–273PubMedCrossRefGoogle Scholar
  52. 52.
    Farde L, Halldin C, Stone-Elander S et al (1987) PET analysis of human dopamine receptor subtypes using 11C-SCH 23390 and 11C-raclopride. Psychopharmacology (Berl) 92(3):278–284CrossRefGoogle Scholar
  53. 53.
    Suhara T, Sudo Y, Okauchi T et al (1999) Extrastriatal dopamine D2 receptor density and affinity in the human brain measured by 3D PET. Int J Neuropsychopharmacol 2(2):73–82. doi: 10.1017/S1461145799001431 PubMedCrossRefGoogle Scholar
  54. 54.
    Okubo Y, Olsson H, Ito H et al (1999) PET mapping of extrastriatal D2-like dopamine receptors in the human brain using an anatomic standardization technique and [11C]FLB 457. Neuroimage 10(6):666–674. doi: 10.1006/nimg.1999.0502 PubMedCrossRefGoogle Scholar
  55. 55.
    Olsson H, Halldin C, Swahn CG et al (1999) Quantification of [11C]FLB 457 binding to extrastriatal dopamine receptors in the human brain. J Cereb Blood Flow Metab 19(10):1164–1173. doi: 10.1097/00004647-199910000-00013 PubMedCrossRefGoogle Scholar
  56. 56.
    Tateno A, Arakawa R, Okumura M et al (2013) Striatal and extrastriatal dopamine D2 receptor occupancy by a novel antipsychotic, blonanserin: a PET study with [11C]raclopride and [11C]FLB 457 in schizophrenia. J Clin Psychopharmacol 33(2):162–169. doi: 10.1097/JCP.0b013e3182825bce PubMedCrossRefGoogle Scholar
  57. 57.
    Talvik M, Nordstrom AL, Okubo Y et al (2006) Dopamine D2 receptor binding in drug-naive patients with schizophrenia examined with raclopride-C11 and positron emission tomography. Psychiatry Res 148(2-3):165–173. doi: 10.1016/j.pscychresns.2006.05.009 PubMedCrossRefGoogle Scholar
  58. 58.
    Montgomery AJ, Mehta MA, Grasby PM (2006) Is psychological stress in man associated with increased striatal dopamine levels?: A [11C]raclopride PET study. Synapse 60(2):124–131. doi: 10.1002/syn.20282 PubMedCrossRefGoogle Scholar
  59. 59.
    Pruessner JC, Champagne F, Meaney MJ et al (2004) Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: a positron emission tomography study using [11C]raclopride. J Neurosci 24(11):2825–2831. doi: 10.1523/JNEUROSCI.3422-03.2004 PubMedCrossRefGoogle Scholar
  60. 60.
    Kessler RM, Zald DH, Ansari MS et al (2014) Changes in dopamine release and dopamine D2/3 receptor levels with the development of mild obesity. Synapse 68(7):317–320. doi: 10.1002/syn.21738 PubMedGoogle Scholar
  61. 61.
    Eisenstein SA, Antenor-Dorsey JA, Gredysa DM et al (2013) A comparison of D2 receptor specific binding in obese and normal-weight individuals using PET with (N-[(11)C]methyl)benperidol. Synapse 67(11):748–756. doi: 10.1002/syn.21680 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Wang GJ, Volkow ND, Thanos PK et al (2004) Similarity between obesity and drug addiction as assessed by neurofunctional imaging: a concept review. J Addict Dis 23(3):39–53. doi: 10.1300/J069v23n03_04 PubMedCrossRefGoogle Scholar
  63. 63.
    Wang GJ, Volkow ND, Logan J et al (2001) Brain dopamine and obesity. Lancet 357(9253):354–357PubMedCrossRefGoogle Scholar
  64. 64.
    Steele KE, Prokopowicz GP, Schweitzer MA et al (2010) Alterations of central dopamine receptors before and after gastric bypass surgery. Obes Surg 20(3):369–374. doi: 10.1007/s11695-009-0015-4 PubMedCrossRefGoogle Scholar
  65. 65.
    Nader MA, Czoty PW (2005) PET imaging of dopamine D2 receptors in monkey models of cocaine abuse: genetic predisposition versus environmental modulation. Am J Psychiatry 162(8):1473–1482. doi: 10.1176/appi.ajp.162.8.1473 PubMedCrossRefGoogle Scholar
  66. 66.
    Boileau I, Payer D, Chugani B et al (2013) The D2/3 dopamine receptor in pathological gambling: a positron emission tomography study with [11C]-(+)-propyl-hexahydro-naphtho-oxazin and [11C]raclopride. Addiction 108(5):953–963. doi: 10.1111/add.12066 PubMedCrossRefGoogle Scholar
  67. 67.
    Steeves TD, Miyasaki J, Zurowski M et al (2009) Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study. Brain 132(Pt 5):1376–1385. doi: 10.1093/brain/awp054 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Hierholzer J, Cordes M, Venz S et al (1998) Loss of dopamine-D2 receptor binding sites in Parkinsonian plus syndromes. J Nucl Med 39(6):954–960PubMedGoogle Scholar
  69. 69.
    Kim YJ, Ichise M, Ballinger JR et al (2002) Combination of dopamine transporter and D2 receptor SPECT in the diagnostic evaluation of PD, MSA, and PSP. Mov Disord 17(2):303–312PubMedCrossRefGoogle Scholar
  70. 70.
    Mo SJ, Linder J, Forsgren L et al (2010) Pre- and postsynaptic dopamine SPECT in the early phase of idiopathic parkinsonism: a population-based study. Eur J Nucl Med Mol Imaging 37(11):2154–2164. doi: 10.1007/s00259-010-1520-3 PubMedCrossRefGoogle Scholar
  71. 71.
    Hirayama M, Hakusui S, Koike Y et al (1995) A scintigraphical qualitative analysis of peripheral vascular sympathetic function with meta-[123I]iodobenzylguanidine in neurological patients with autonomic failure. J Auton Nerv Syst 53(2-3):230–234PubMedCrossRefGoogle Scholar
  72. 72.
    Satoh A, Serita T, Tsujihata M (1997) Total defect of metaiodobenzylguanidine (MIBG) imaging on heart in Parkinson’s disease: assessment of cardiac sympathetic denervation. Nihon Rinsho 55(1):202–206PubMedGoogle Scholar
  73. 73.
    Goldstein DS, Holmes C, Li ST et al (2000) Cardiac sympathetic denervation in Parkinson disease. Ann Intern Med 133(5):338–347PubMedCrossRefGoogle Scholar
  74. 74.
    Spiegel J, Mollers MO, Jost WH et al (2005) FP-CIT and MIBG scintigraphy in early Parkinson’s disease. Mov Disord 20(5):552–561. doi: 10.1002/mds.20369 PubMedCrossRefGoogle Scholar
  75. 75.
    Takatsu H, Nagashima K, Murase M et al (2000) Differentiating Parkinson disease from multiple-system atrophy by measuring cardiac iodine-123 metaiodobenzylguanidine accumulation. JAMA 284(1):44–45PubMedCrossRefGoogle Scholar
  76. 76.
    Orimo S (2012) The clinical significance of MIBG myocardial scintigraphy in Parkinson disease. Brain Nerve 64(4):403–412PubMedGoogle Scholar
  77. 77.
    Gjerloff T, Jakobsen S, Nahimi A et al (2014) In vivo imaging of human acetylcholinesterase density in peripheral organs using 11C-donepezil: dosimetry, biodistribution, and kinetic analyses. J Nucl Med 55(11):1818–1824. doi: 10.2967/jnumed.114.143859 PubMedCrossRefGoogle Scholar
  78. 78.
    Gjerloff T, Fedorova T, Knudsen K et al (2015) Imaging acetylcholinesterase density in peripheral organs in Parkinson’s disease with 11C-donepezil PET. Brain 138(Pt 3):653–663. doi: 10.1093/brain/awu369 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Eckert T, Barnes A, Dhawan V et al (2005) FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage 26(3):912–921. doi: 10.1016/j.neuroimage.2005.03.012 PubMedCrossRefGoogle Scholar
  80. 80.
    Eidelberg D, Moeller JR, Ishikawa T et al (1995) Early differential diagnosis of Parkinson’s disease with 18F-fluorodeoxyglucose and positron emission tomography. Neurology 45(11):1995–2004PubMedCrossRefGoogle Scholar
  81. 81.
    Eggers C, Hilker R, Burghaus L et al (2009) High resolution positron emission tomography demonstrates basal ganglia dysfunction in early Parkinson’s disease. J Neurol Sci 276(1-2):27–30. doi: 10.1016/j.jns.2008.08.029 PubMedCrossRefGoogle Scholar
  82. 82.
    Huang C, Tang C, Feigin A et al (2007) Changes in network activity with the progression of Parkinson’s disease. Brain 130(Pt 7):1834–1846. doi: 10.1093/brain/awm086 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Jokinen P, Scheinin N, Aalto S et al (2010) [(11)C]PIB-, [(18)F]FDG-PET and MRI imaging in patients with Parkinson’s disease with and without dementia. Parkinsonism Relat Disord 16(10):666–670. doi: 10.1016/j.parkreldis.2010.08.021 PubMedCrossRefGoogle Scholar
  84. 84.
    Eckert T, Feigin A, Lewis DE et al (2007) Regional metabolic changes in parkinsonian patients with normal dopaminergic imaging. Mov Disord 22(2):167–173. doi: 10.1002/mds.21185 PubMedCrossRefGoogle Scholar
  85. 85.
    Jucaite A, Odano I, Olsson H et al (2006) Quantitative analyses of regional [11C]PE2I binding to the dopamine transporter in the human brain: a PET study. Eur J Nucl Med Mol Imaging 33(6):657–668. doi: 10.1007/s00259-005-0027-9 PubMedCrossRefGoogle Scholar
  86. 86.
    Schou M, Steiger C, Varrone A et al (2009) Synthesis, radiolabeling and preliminary in vivo evaluation of [18F]FE-PE2I, a new probe for the dopamine transporter. Bioorg Med Chem Lett 19(16):4843–4845. doi: 10.1016/j.bmcl.2009.06.032 PubMedCrossRefGoogle Scholar
  87. 87.
    Hirvonen J, Johansson J, Teras M et al (2008) Measurement of striatal and extrastriatal dopamine transporter binding with high-resolution PET and [11C]PE2I: quantitative modeling and test-retest reproducibility. J Cereb Blood Flow Metab 28(5):1059–1069. doi: 10.1038/sj.jcbfm.9600607 PubMedCrossRefGoogle Scholar
  88. 88.
    Jonasson M, Appel L, Engman J et al (2013) Validation of parametric methods for [(1)(1)C]PE2I positron emission tomography. Neuroimage 74:172–178. doi: 10.1016/j.neuroimage.2013.02.022 PubMedCrossRefGoogle Scholar
  89. 89.
    Appel L, Jonasson M, Danfors T et al (2015) Use of 11C-PE2I Positron Emission Tomography in Differential Diagnosis of Parkinsonian Disorders. J Nucl Med. doi: 10.2967/jnumed.114.148619 PubMedGoogle Scholar
  90. 90.
    Klunk WE, Engler H, Nordberg A et al (2003) Imaging the pathology of Alzheimer’s disease: amyloid-imaging with positron emission tomography. Neuroimaging Clin N Am 13(4):781–789, ixPubMedCrossRefGoogle Scholar
  91. 91.
    Klunk WE, Engler H, Nordberg A et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55(3):306–319. doi: 10.1002/ana.20009 PubMedCrossRefGoogle Scholar
  92. 92.
    Cairns NJ, Ikonomovic MD, Benzinger T et al (2009) Absence of Pittsburgh compound B detection of cerebral amyloid beta in a patient with clinical, cognitive, and cerebrospinal fluid markers of Alzheimer disease: a case report. Arch Neurol 66(12):1557–1562. doi: 10.1001/archneurol.2009.279 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Pearson SD, Ollendorf DA, Colby JA (2014) Amyloid-beta positron emission tomography in the diagnostic evaluation of alzheimer disease: summary of primary findings and conclusions. JAMA Intern Med 174(1):133–134. doi: 10.1001/jamainternmed.2013.11711 PubMedCrossRefGoogle Scholar
  94. 94.
    Brooks DJ (2009) Imaging amyloid in Parkinson’s disease dementia and dementia with Lewy bodies with positron emission tomography. Mov Disord 24(Suppl 2):S742–S747. doi: 10.1002/mds.22581 PubMedCrossRefGoogle Scholar
  95. 95.
    Edison P, Rowe CC, Rinne JO et al (2008) Amyloid load in Parkinson’s disease dementia and Lewy body dementia measured with [11C]PIB positron emission tomography. J Neurol Neurosurg Psychiatry 79(12):1331–1338. doi: 10.1136/jnnp.2007.127878 PubMedCrossRefGoogle Scholar
  96. 96.
    Aarsland D, Perry R, Brown A et al (2005) Neuropathology of dementia in Parkinson’s disease: a prospective, community-based study. Ann Neurol 58(5):773–776. doi: 10.1002/ana.20635 PubMedCrossRefGoogle Scholar
  97. 97.
    Tolboom N, Yaqub M, van der Flier WM et al (2009) Detection of Alzheimer pathology in vivo using both 11C-PIB and 18F-FDDNP PET. J Nucl Med 50(2):191–197. doi: 10.2967/jnumed.108.056499 PubMedCrossRefGoogle Scholar
  98. 98.
    Ossenkoppele R, Tolboom N, Foster-Dingley JC et al (2012) Longitudinal imaging of Alzheimer pathology using [11C]PIB, [18F]FDDNP and [18F]FDG PET. Eur J Nucl Med Mol Imaging 39(6):990–1000. doi: 10.1007/s00259-012-2102-3 PubMedCrossRefGoogle Scholar
  99. 99.
    Nelson LD, Siddarth P, Kepe V et al (2011) Positron emission tomography of brain beta-amyloid and tau levels in adults with Down syndrome. Arch Neurol 68(6):768–774. doi: 10.1001/archneurol.2011.104 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Kepe V, Bordelon Y, Boxer A et al (2013) PET imaging of neuropathology in tauopathies: progressive supranuclear palsy. J Alzheimers Dis 36(1):145–153. doi: 10.3233/JAD-130032 PubMedPubMedCentralGoogle Scholar
  101. 101.
    Lebouvier T, Chaumette T, Damier P et al (2008) Pathological lesions in colonic biopsies during Parkinson’s disease. Gut 57(12):1741–1743. doi: 10.1136/gut.2008.162503 PubMedCrossRefGoogle Scholar
  102. 102.
    Lebouvier T, Neunlist M, Bruley des Varannes S et al (2010) Colonic biopsies to assess the neuropathology of Parkinson’s disease and its relationship with symptoms. PLoS One 5(9), e12728. doi: 10.1371/journal.pone.0012728 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Hilton D, Stephens M, Kirk L et al (2014) Accumulation of alpha-synuclein in the bowel of patients in the pre-clinical phase of Parkinson’s disease. Acta Neuropathol 127(2):235–241. doi: 10.1007/s00401-013-1214-6 PubMedCrossRefGoogle Scholar
  104. 104.
    Donadio V, Incensi A, Leta V et al (2014) Skin nerve alpha-synuclein deposits: a biomarker for idiopathic Parkinson disease. Neurology 82(15):1362–1369. doi: 10.1212/WNL.0000000000000316 PubMedCrossRefGoogle Scholar
  105. 105.
    Neal KL, Shakerdge NB, Hou SS et al (2013) Development and screening of contrast agents for in vivo imaging of Parkinson’s disease. Mol Imaging Biol 15(5):585–595. doi: 10.1007/s11307-013-0634-y PubMedCrossRefGoogle Scholar
  106. 106.
    McGeer PL, Itagaki S, Boyes BE et al (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38(8):|1285–1291PubMedCrossRefGoogle Scholar
  107. 107.
    Gerhard A, Pavese N, Hotton G et al (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21(2):404–412PubMedCrossRefGoogle Scholar
  108. 108.
    Edison P, Ahmed I, Fan Z et al (2013) Microglia, amyloid, and glucose metabolism in Parkinson’s disease with and without dementia. Neuropsychopharmacology 38(6):938–949. doi: 10.1038/npp.2012.255 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Surgical Sciences, Section of RadiologyUppsala UniversityUppsalaSweden
  2. 2.Section for Nuclear Medicine & PET, Department of Surgical SciencesUppsala UniversityUppsalaSweden

Personalised recommendations