Advertisement

PET Imaging as a Diagnostic Tool in Alzheimer’s Disease

  • Juha O. RinneEmail author
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

There is a long presymptomatic period during which a person may have biomarker evidence of Alzheimer’s disease (AD) pathophysiology but still be cognitively intact. It is yet unclear which additional factors that ultimately will determine progression to mild cognitive impairment and eventually to AD dementia. Amyloid-β (Aβ) and tau imaging reveal in vivo the key protein aggregates seen in the AD brain and will help in early diagnosis. However, a considerable proportion of elderly individuals are Aβ PET positive while being cognitively intact. With FDG PET, a typical pattern of hypometabolism can be found in both AD and FTD, which reflects the disease progression and can be used to aid in the differential diagnostics. Moreover, tau, neurotransmitter, and neuroinflammation ligands help to understand the pathophysiology of AD, but further studies are needed to understand how they can be applied in the diagnostic process. Which combination of these biomarkers that eventually will turn out to be the most sensitive and best predictor of AD remains to be determined.

Key words

Alzheimer’s disease Amyloid Dementia Diagnosis Diagnostic FDG Neuroinflammation Neurotransmitter PET Positron emission tomography Tau 

References

  1. 1.
    Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol (Berl) 82:239–259CrossRefGoogle Scholar
  2. 2.
    Braak H, Braak E (1997) (1997). Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18(4):351–357CrossRefPubMedGoogle Scholar
  3. 3.
    Thal DR, Rub U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800CrossRefPubMedGoogle Scholar
  4. 4.
    Jack CR Jr, Knopman DS, Jagust WJ et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12(2):207–216CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Choi SH, Kim YH, Hebisch M et al (2014) A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature 515(7526):274–278CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Herholz K (2003) PET studies in dementia. Ann Nucl Med 17:79–89CrossRefPubMedGoogle Scholar
  7. 7.
    Mielke R, Kessler J, Szelies B et al (1998) Normal and pathological aging—findings of positron-emission-tomography. J Neural Transm 105:821–837CrossRefPubMedGoogle Scholar
  8. 8.
    Rocher AB, Chapon F, Blaizot X et al (2004) Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons. Neuroimage 20:1894–1898CrossRefGoogle Scholar
  9. 9.
    Minoshima S, Giordani B, Berent S et al (1997) Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 42:85–94CrossRefPubMedGoogle Scholar
  10. 10.
    De Santi S, de Leon MJ, Rusinek H et al (2001) Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging 22:529–539CrossRefPubMedGoogle Scholar
  11. 11.
    Nestor PJ, Fryer TD, Smielewski P, Hodges JR (2003) Limbic hypometabolism in Alzheimer’s disease and mild cognitive impairment. Ann Neurol 54:343–351CrossRefPubMedGoogle Scholar
  12. 12.
    Mosconi L, Tsui WH, Herholz K et al (2008) Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med 49(3):390–398CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    de Leon MJ, Convit A, Wolf OT et al (2001) Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-D-glucose/positron-emission tomography (FDG/PET). Proc Natl Acad Sci U S A 98(19):10966–10971CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mosconi L (2005) Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging 32:486–510CrossRefPubMedGoogle Scholar
  15. 15.
    Li Y, Rinne JO, Mosconi L et al (2008) Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease. Eur J Nucl Med Mol Imaging 35(12):2169–2181CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Reiman EM, Caselli RJ, Yun LS et al (1996) Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med 334(12):752–758CrossRefPubMedGoogle Scholar
  17. 17.
    Small GW, Ercoli LM, Silverman DH et al (2000) Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci U S A 97(11):6037–6042CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mosconi L, Rinne JO, Tsui WH et al (2013) Amyloid and metabolic positron emission tomography imaging of cognitively normal adults with Alzheimer’s parents. Neurobiol Aging 34(1):22–34CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jagust W, Gitcho A, Sun F et al (2006) Brain imaging evidence of Alzheimer’s disease in normal aging. Ann Neurol 59:673–681CrossRefPubMedGoogle Scholar
  20. 20.
    Silverman DHS, Small GW, Chang CY et al (2001) Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA 286:2120–2127CrossRefPubMedGoogle Scholar
  21. 21.
    Santens P, De Bleecker J, Goethals P et al (2001) Differential regional cerebral uptake of 18F-fluoro-2-deoxy-D-glucose in Alzheimer’s disease and frontotemporal dementia at initial diagnosis. Eur Neurol 45:19–27CrossRefPubMedGoogle Scholar
  22. 22.
    Foster NL, Heidebrink JL, Clark CM et al (2007) FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain 130(Pt 10):2616–2635CrossRefPubMedGoogle Scholar
  23. 23.
    Minoshima S, Foster NL, Sima AA et al (2001) Alzheimer’s disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation. Ann Neurol 50:358–365CrossRefPubMedGoogle Scholar
  24. 24.
    Albin RL, Minoshima S, DAmato CJ et al (1996) Fluoro-deoxyglucose positron emission tomography in diffuse Lewy body disease. Neurology 47:462–466CrossRefPubMedGoogle Scholar
  25. 25.
    Higuchi M, Tashiro M, Arai H et al (2000) Glucose hypometabolism and neuropathological correlates in brains of dementia with Lewy bodies. Exp Neurol 162:247–256CrossRefPubMedGoogle Scholar
  26. 26.
    Ishii K, Imamura T, Sasaki M et al (1998) Regional cerebral glucose metabolism in dementia with Lewy bodies and Alzheimer’s disease. Neurology 51:125–130CrossRefPubMedGoogle Scholar
  27. 27.
    Barber R, Ballard C, McKeith IG, Gholkar A, O’Brien JT (2000) MRI volumetric study of dementia with Lewy bodies: a comparison with AD and vascular dementia. Neurology 54:1304–1309CrossRefPubMedGoogle Scholar
  28. 28.
    Szelies B, Mielke R, Herholz K, Heiss W-D (1994) Quantitative topographical EEG compared to FDG PET for classification of vascular and degenerative dementia. Electroencephalogr Clin Neurophysiol 91:131–139CrossRefPubMedGoogle Scholar
  29. 29.
    Aarsland D, Kurz MW (2010) The epidemiology of dementia associated with Parkinson disease. J Neurol Sci 289(1-2):18–22. doi: 10.1016/j.jns.2009.08.034 CrossRefPubMedGoogle Scholar
  30. 30.
    Hely MA, Morris JG, Reid WG, Trafficante R (2005) Sydney Multicenter Study of Parkinson’s disease: non-L-dopa-responsive problems dominate at 15 years. Mov Disord 20(2):190–199CrossRefPubMedGoogle Scholar
  31. 31.
    Hely MA, Reid WG, Adena MA, Halliday GM, Morris JG (2008) The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord 23(6):837–844. doi: 10.1002/mds.21956 CrossRefPubMedGoogle Scholar
  32. 32.
    Jokinen P, Scheinin N, Aalto S et al (2010) [(11)C]PIB-, [(18)F]FDG-PET and MRI imaging in patients with Parkinson’s disease with and without dementia. Parkinsonism Relat Disord 16(10):666–670CrossRefPubMedGoogle Scholar
  33. 33.
    Lyoo CH, Jeong Y, Ryu YH, Rinne JO, Lee MS (2010) Cerebral glucose metabolism of Parkinson’s disease patients with mild cognitive impairment. Eur Neurol 64(2):65–73. doi: 10.1159/000315036 CrossRefPubMedGoogle Scholar
  34. 34.
    Bohnen NI, Koeppe RA, Minoshima S, Giordani B, Albin RL, Frey KA, Kuhl DE (2011) Cerebral glucose metabolic features of Parkinson disease and incident dementia: longitudinal study. J Nucl Med 52(6):848–855. doi: 10.2967/jnumed.111.089946 CrossRefPubMedGoogle Scholar
  35. 35.
    Edison P, Ahmed I, Fan Z et al (2013) Microglia, amyloid, and glucose metabolism in Parkinson’s disease with and without dementia. Neuropsychopharmacology 38(6):938–949. doi: 10.1038/npp.2012.255 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Garcia-Garcia D, Clavero P, Gasca Salas C et al (2012) Posterior parietooccipital hypometabolism may differentiate mild cognitive impairment from dementia in Parkinson’s disease. Eur J Nucl Med Mol Imaging 39(11):1767–1777CrossRefPubMedGoogle Scholar
  37. 37.
    Iyo M, Namba H, Fukushi K et al (1997) Measurement of acetylcholinesterase by positron emission tomography in the brain of healthy controls and patients with Alzheimer’s disease. Lancet 349:1805–1809CrossRefPubMedGoogle Scholar
  38. 38.
    Kuhl DE, Koeppe RA, Minoshima S et al (1999) In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology 52:691–699CrossRefPubMedGoogle Scholar
  39. 39.
    Rinne JO, Kaasinen V, Järvenpää T et al (2003) Brain acetycholinesterase activity in mild cognitive impairment and early Alzheimer’s disease. J Neurol Neurosurg Psychiatry 74:113–115CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bohnen NI, Kaufer DI, Ivanco L et al (2003) Cortical cholinergic function is more severely affected in Parkinsonian dementia than in Alzheimer’s Disease: an in vivo PET Study. Arch Neurol 60:1745–1748CrossRefPubMedGoogle Scholar
  41. 41.
    Francis PT, Webster MT, Chessell IP et al (1993) Neurotransmitters and second messengers in aging and Alzheimer’s disease. Ann N Y Acad Sci 695:19–26CrossRefPubMedGoogle Scholar
  42. 42.
    Xu Y, Yan J, Zhou P et al (2012) Neurotransmitter receptors and cognitive dysfunction in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 97(1):1–13. doi: 10.1016/j.pneurobio.2012.02.002 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lanari A, Amenta F, Silvestrelli G, Tomassoni D, Parnetti L (2006) Neurotransmitter deficits in behavioural and psychological symptoms of Alzheimer’s disease. Mech Ageing Dev 127(2):158–165CrossRefPubMedGoogle Scholar
  44. 44.
    Booij J, Habraken JB, Bergmans P et al (1998) Imaging of dopamine transporters with iodine-123-FP-CIT SPECT in healthy controls and patients with Parkinson’s disease. J Nucl Med 39(11):1879–1884PubMedGoogle Scholar
  45. 45.
    Rinne JO, Nurmi E, Ruottinen HM et al (2001) [(18)F]FDOPA and [(18)F]CFT are both sensitive PET markers to detect presynaptic dopaminergic hypofunction in early Parkinson’s disease. Synapse 40(3):193–200CrossRefPubMedGoogle Scholar
  46. 46.
    Walker Z, Jaros E, Walker RW et al (2007) Dementia with Lewy bodies: a comparison of clinical diagnosis, FP-CIT single photon emission computed tomography imaging and autopsy. J Neurol Neurosurg Psychiatry 78(11):1176–1181CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Koeppe RA, Gilman S, Junck L, Wernette K, Frey KA (2008) Differentiating Alzheimer’s disease from dementia with Lewy bodies and Parkinson’s disease with (+)-[11C]dihydrotetrabenazine positron emission tomography. Alzheimers Dement 4(1 Suppl 1):S67–S76. doi: 10.1016/j.jalz.2007.11.016 CrossRefPubMedGoogle Scholar
  48. 48.
    McKeith I, O’Brien J, Walker Z et al (2007) Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol 6:305–313CrossRefPubMedGoogle Scholar
  49. 49.
    Walker Z, Costa DC, Walker RWH et al (2002) Differentiation of dementia with Lewy bodies from Alzheimer’s disease using a dopaminergic presynaptic ligand. J Neurol Neurosurg Psychiatry 73:134–140CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Klunk WE, Engler H, Nordberg A et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol 55:306–319CrossRefPubMedGoogle Scholar
  51. 51.
    Mintun MA, Larossa GN, Sheline YI et al (2006) [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 67:446–452CrossRefPubMedGoogle Scholar
  52. 52.
    Rowe CC, Ng S, Ackermann U et al (2007) Imaging beta-amyloid burden in aging and dementia. Neurology 68:1718–1725CrossRefPubMedGoogle Scholar
  53. 53.
    Engler H, Forsberg A, Almkvist O et al (2006) Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain 129(Pt 11):2856–2866CrossRefPubMedGoogle Scholar
  54. 54.
    Jack CR Jr, Lowe VJ, Weigand SD et al (2009) Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain 132(Pt 5):1355–1365CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Scheinin NM, Aalto S, Koikkalainen J et al (2009) Follow-up of [11C]PIB uptake and brain volume in patients with Alzheimer disease and controls. Neurology 73(15):1186–1192CrossRefPubMedGoogle Scholar
  56. 56.
    Grimmer T, Tholen S, Yousefi BH et al (2010) Progression of cerebral amyloid load is associated with the apolipoprotein E ε4 genotype in Alzheimer's disease. Biol Psychiatry 68(10):879–884CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Villemagne VL, Pike KE, Chételat G et al (2011) Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann Neurol 69(1):181–192CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kemppainen NM, Aalto S, Wilson IA et al (2007) PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology 68(19):1603–1606CrossRefPubMedGoogle Scholar
  59. 59.
    Forsberg A, Engler H, Almkvist O et al (2008) PET imaging of amyloid deposits in patients with mild cognitive impairment. Neurobiol Aging 29:1456–1465CrossRefPubMedGoogle Scholar
  60. 60.
    Wolk DA, Price JC, Saxton JA et al (2009) Amyloid imaging in mild cognitive impairment subtypes. Ann Neurol 65(5):557–568. doi: 10.1002/ana.21598 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Nordberg A, Carter SF, Rinne J et al (2013) A European multicentre PET study of fibrillar amyloid in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 40:104–114CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Okello A, Koivunen J, Edison P et al (2009) Conversion of amyloid positive and negative MCI to AD over 3 years. An 11C-PIB PET study. Neurology 73(10):754–760CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Pike KE, Savage G, Villemagne VL et al (2007) Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer’s disease. Brain 130:2837–2844CrossRefPubMedGoogle Scholar
  64. 64.
    Villain N, Chetelat G, Grassiot B et al (2012) Regional dynamics of amyloid-beta deposition in healthy elderly, mild cognitive impairment and Alzheimer’s disease: a voxelwise PiB-PET longitudinal study. Brain 135(Pt 7):2126–2139CrossRefPubMedGoogle Scholar
  65. 65.
    Rowe CC, Ellis KA, Rimajova M et al (2010) Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging 31:1275–1283CrossRefPubMedGoogle Scholar
  66. 66.
    Scheinin NM, Wikman K, Jula A et al (2014) Cortical 11C-PIB uptake is associated with age, APOE genotype, and gender in "healthy aging". J Alzheimers Dis 41(1):193–202PubMedGoogle Scholar
  67. 67.
    Jansen WJ, Ossenkoppele R, Knol DL et al (2015) Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA 313(19):1924–1938. doi: 10.1001/jama.2015.4668 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Joshi AD, Pontecorvo MJ, Clark CM et al (2012) Performance characteristics of amyloid PET with florbetapir F 18 in patients with Alzheimer’s disease and cognitively normal subjects. J Nucl Med 53:378–384CrossRefPubMedGoogle Scholar
  69. 69.
    Rowe CC, Ackerman U, Browne W et al (2008) Imaging of amyloid beta in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol 7:129–135Google Scholar
  70. 70.
    Vandenberghe R, Van Laere K, Ivanoiu A et al (2010) 18F-Flutemetamol Amyloid Imaging in Alzheimer Disease and Mild Cognitive Impairment A Phase 2 Trial. Ann Neurol 68:319–329CrossRefPubMedGoogle Scholar
  71. 71.
    Rowe CC, Pejoska S, Mulligan RS et al (2013) (2013) Head-to-head comparison of 11C-PiB and 18F-AZD4694 (NAV4694) for β-amyloid imaging in aging and dementia. J Nucl Med 54(6):880–886. doi: 10.2967/jnumed.112.114785 CrossRefPubMedGoogle Scholar
  72. 72.
    Cselényi Z, Jönhagen ME, Forsberg A et al (2012) Clinical validation of 18F-AZD4694, an amyloid-β-specific PET radioligand. J Nucl Med 53(3):415–424. doi: 10.2967/jnumed.111.094029 CrossRefPubMedGoogle Scholar
  73. 73.
    Shoghi-Jadid K, Small GW, Agdeppa ED et al (2002) (2002) Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatr 10:24–35CrossRefGoogle Scholar
  74. 74.
    Small GW, Kepe V, Ercoli LM et al (2006) PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med 355:2652–2663CrossRefPubMedGoogle Scholar
  75. 75.
    Shin J, Kepe V, Barrio JR, Small GW (2011) The merits of FDDNP-PET imaging in Alzheimer’s disease. J Alzheimers Dis 26(Suppl 3):135–145PubMedGoogle Scholar
  76. 76.
    Zwan MD, Okamura N, Fodero-Tavoletti MT et al (2014) Voyage au bout de la nuit: Aβ and tau imaging in dementias. Q J Nucl Med Mol Imaging 58(4):398–412PubMedGoogle Scholar
  77. 77.
    Johnson KA, Minoshima S, Bohnen NI et al (2013) Appropriate use criteria for amyloid PET: A report of the amyloid imaging task force, the society of nuclear medicine and molecular imaging, and the Alzheimer’s association. J Nucl Med 54(3):476–490CrossRefPubMedGoogle Scholar
  78. 78.
    Okamura N, Harada R, Furumoto S et al (2014) Tau PET imaging in Alzheimer’s disease. Curr Neurol Neurosci Rep 14(11):500. doi: 10.1007/s11910-014-0500-6 CrossRefPubMedGoogle Scholar
  79. 79.
    Okamura N, Furumoto S, Fodero-Tavoletti MT et al (2014) Non-invasive assessment of Alzheimer’s disease neurofibrillary pathology using 18F-THK5105 PET. Brain 137(Pt 6):1762–1771. doi: 10.1093/brain/awu064 CrossRefPubMedGoogle Scholar
  80. 80.
    Harada R, Okamura N, Furumoto S et al (2015) [(18)F]THK-5117 PET for assessing neurofibrillary pathology in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 42(7):1052–1061. doi: 10.1007/s00259-015-3035-4 CrossRefPubMedGoogle Scholar
  81. 81.
    Okamura N, Furumoto S, Harada R et al (2014) Characterization of [18F]THK-5351, a novel PET tracer for imaging tau pathology in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 41:S260CrossRefGoogle Scholar
  82. 82.
    Chien DT, Bahri S, Szardenings AK, Walsh JC, Mu F, Su MY (2013) Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis 34:457–468PubMedGoogle Scholar
  83. 83.
    Chien DT, Szardenings AK, Bahri S et al (2014) Early clinical PET imaging results with the Novel PHF-Tau radioligand [F18]-T808. J Alzheimers Dis 38:171–184PubMedGoogle Scholar
  84. 84.
    Maruyama M, Shimada H, Suhara T et al (2013) Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 79:1094–1108CrossRefPubMedGoogle Scholar
  85. 85.
    Jacobs AH, Tavitian B; INMiND consortium (2012) Noninvasive molecular imaging of neuroinflammation. J Cereb Blood Flow Metab 32(7):1393–1415. doi: 10.1038/jcbfm.2012.53 CrossRefGoogle Scholar
  86. 86.
    Cagnin A, Brooks DJ, Kennedy AM et al (2001) In-vivo measurement of activated microglia in dementia. Lancet 358(9280):461–467CrossRefPubMedGoogle Scholar
  87. 87.
    Edison P, Archer HA, Gerhard A et al (2008) Microglia, amyloid, and cognition in Alzheimer’s disease: An [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis 32(3):412–419. doi: 10.1016/j.nbd.2008.08.001 CrossRefPubMedGoogle Scholar
  88. 88.
    Kreisl WC, Lyoo CH, McGwier M et al (2013) Biomarkers Consortium PET Radioligand Project Team. In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease. Brain 136(Pt 7):2228–2238. doi: 10.1093/brain/awt145 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Wiley CA, Lopresti BJ, Venneti S et al (2009) Carbon 11-labeled Pittsburgh Compound B and carbon 11-labeled (R)-PK11195 positron emission tomographic imaging in Alzheimer disease. Arch Neurol 66(1):60–67CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Fowler JS, Logan J, Volkow ND, Wang GJ (2005) Translational neuroimaging: positron emission tomography studies of monoamine oxidase. Mol Imaging Biol 7:377–387CrossRefPubMedGoogle Scholar
  91. 91.
    Saura J, Bleuel Z, Ulrich J et al (1996) Molecular neuroanatomy of human monoamine oxidases A and B revealed by quantitative enzyme radioautography and in situ hybridization histochemistry. Neuroscience 70:755–774CrossRefPubMedGoogle Scholar
  92. 92.
    Carter SF, Schöll M, Almkvist O et al (2012) Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J Nucl Med 53(1):37–46CrossRefPubMedGoogle Scholar
  93. 93.
    Villemagne VL, Burnham S, Bourgeat P et al (2013) Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol 12(4):357–367CrossRefPubMedGoogle Scholar
  94. 94.
    Dubois B, Feldman HH, Jacova C et al (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13(6):614–629CrossRefPubMedGoogle Scholar
  95. 95.
    McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):263–269CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Morris JC, Blennow K, Froelich L et al (2014) Harmonized diagnostic criteria for Alzheimer’s disease: recommendations. J Intern Med 275(3):204–213. doi: 10.1111/joim.12199 CrossRefPubMedGoogle Scholar
  97. 97.
    Prestia A, Caroli A, Wade SK et al (2015) Prediction of AD dementia by biomarkers following the NIA-AA and IWG diagnostic criteria in MCI patients from three European memory clinics. Alzheimers Dement 11(10):1191–1201, pii: S1552-5260(14)02890-8CrossRefPubMedGoogle Scholar
  98. 98.
    Vos SJ, Verhey F, Frölich L et al (2015) Prevalence and prognosis of Alzheimer’s disease at the mild cognitive impairment stage. Brain 138(Pt 5):1327–1338. doi: 10.1093/brain/awv029 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Turku PET Centre and Division of Clinical NeurosciencesUniversity of Turku and Turku University HospitalTurkuFinland

Personalised recommendations