Immunotherapy on Experimental Models for Huntington’s Disease

  • Anne MesserEmail author
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


The misfolding mutant Huntingtin protein (HTT) has been identified as the primary trigger of dysregulation and degeneration in Huntington’s disease (HD). In order to counteract the abnormal protein–protein interactions and aggregation that characterize this and related protein misfolding diseases, antibody fragments that bind near the pathogenic region have been identified and characterized, and then engineered for improved affinity, intracellular solubility, and bispecific function. HD is a paradigm disease for misfolding proteins, since the readouts are exceptionally robust in cell and animal models. Candidate antibody fragments include single-chain Fv (scFv) and single domain antibodies (dAb, VL, VH). They have been selected from phage display libraries, or cloned from monoclonal antibodies of known specificity for the HTT Exon1 targets.

Preclinical immunotherapies have been tested with gene delivery via transgenes, or delivered using AAV or lentiviral gene therapy vectors. These intrabodies can strongly affect the HD phenotype across a range of epitopes and model systems. Given that individuals with HD can be identified genetically in a premanifest stage of disease, the potential for immunotherapeutic interventions is very promising.

Key words

Trinucleotide repeats Polyglutamine expansion Fibrillar aggregates Single-chain Fv (scFv) 



We thank members of the Messer lab group, especially Drs. David Butler and Abigail Snyder-Keller, and Kevin Manley for helpful discussions of the manuscript. Work in the Messer lab was supported in part by grants from NIH/NINDS NS053912 and NS061257, and NSF REU #DBI1062963; Hereditary Disease Foundation, High Q Foundation/CHDI, Huntington’s Disease Society of America, and the Michael J. Fox Foundation.


  1. 1.
    Wexler NS, Rose EA, Housman DE (1991) Molecular approaches to hereditary diseases of the nervous system: Huntington’s disease as a paradigm. Annu Rev Neurosci 14:503–529CrossRefPubMedGoogle Scholar
  2. 2.
    Crook ZR, Housman D (2011) Huntington’s disease: can mice lead the way to treatment? Neuron 69(3):423–435CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gonitel R, Moffitt H, Sathasivam K, Woodman B, Detloff PJ, Faull RL et al (2008) DNA instability in postmitotic neurons. Proc Natl Acad Sci U S A 105(9):3467–3472CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lecerf JM, Shirley TL, Zhu Q, Kazantsev A, Amersdorfer P, Housman DE et al (2001) Human single-chain Fv intrabodies counteract in situ huntingtin aggregation in cellular models of Huntington’s disease. Proc Natl Acad Sci U S A 98(8):4764–4769CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ehrlich ME, Conti L, Toselli M, Taglietti L, Fiorillo E, Taglietti V et al (2001) ST14A cells have properties of a medium-size spiny neuron. Exp Neurol 167(2):215–226CrossRefPubMedGoogle Scholar
  6. 6.
    Kvam E, Nannenga BL, Wang MS, Jia Z, Sierks MR, Messer A (2009) Conformational targeting of fibrillar polyglutamine proteins in live cells escalates aggregation and cytotoxicity. PLoS One 4(5):e5727CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Miller TW, Messer A (2005) Intrabody applications in neurological disorders: progress and future prospects. Mol Ther 12(3):394–401CrossRefPubMedGoogle Scholar
  8. 8.
    Murphy RC, Messer A (2004) A single-chain Fv intrabody provides functional protection against the effects of mutant protein in an organotypic slice culture model of Huntington’s disease. Brain Res Mol Brain Res 121(1-2):141–145CrossRefPubMedGoogle Scholar
  9. 9.
    Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N et al (2004) SUMO modification of Huntingtin and Huntington’s disease pathology. Science 304(5667):100–104CrossRefPubMedGoogle Scholar
  10. 10.
    Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C et al (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87(3):493–506CrossRefPubMedGoogle Scholar
  11. 11.
    Gray M, Shirasaki DI, Cepeda C, Andre VM, Wilburn B, Lu XH et al (2008) Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J Neurosci 28(24):6182–6195CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Slow EJ, van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng Y et al (2003) Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet 12(13):1555–1567CrossRefPubMedGoogle Scholar
  13. 13.
    Miller TW, Shirley TL, Wolfgang WJ, Kang X, Messer A (2003) DNA vaccination against mutant huntingtin ameliorates the HDR6/2 diabetic phenotype. Mol Ther 7(5 Pt 1):572–579CrossRefPubMedGoogle Scholar
  14. 14.
    Wheeler VC, Gutekunst CA, Vrbanac V, Lebel LA, Schilling G, Hersch S et al (2002) Early phenotypes that presage late-onset neurodegenerative disease allow testing of modifiers in Hdh CAG knock-in mice. Hum Mol Genet 11(6):633–640CrossRefPubMedGoogle Scholar
  15. 15.
    Menalled LB, Sison JD, Dragatsis I, Zeitlin S, Chesselet MF (2003) Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington’s disease with 140 CAG repeats. J Comp Neurol 465(1):11–26CrossRefPubMedGoogle Scholar
  16. 16.
    Kvam E, Sierks MR, Shoemaker CB, Messer A (2010) Physico-chemical determinants of soluble intrabody expression in mammalian cell cytoplasm. Protein Eng Des Sel 23(6):489–498CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Miller TW, Zhou C, Gines S, MacDonald ME, Mazarakis ND, Bates GP et al (2005) A human single-chain Fv intrabody preferentially targets amino-terminal Huntingtin’s fragments in striatal models of Huntington’s disease. Neurobiol Dis 19(1-2):47–56CrossRefPubMedGoogle Scholar
  18. 18.
    Wolfgang WJ, Miller TW, Webster JM, Huston JS, Thompson LM, Marsh JL et al (2005) Suppression of Huntington’s disease pathology in Drosophila by human single-chain Fv antibodies. Proc Natl Acad Sci U S A 102(32):11563–11568CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Dragatsis I, Levine MS, Zeitlin S (2000) Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat Genet 26(3):300–306CrossRefPubMedGoogle Scholar
  20. 20.
    Bortvedt SF, McLear JA, Messer A, Ahern-Rindell AJ, Wolfgang WJ (2010) Cystamine and intrabody co-treatment confers additional benefits in a fly model of Huntington’s disease. Neurobiol Dis 40(1):130–134CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hathorn T, Snyder-Keller A, Messer A (2011) Nicotinamide improves motor deficits and upregulates PGC-1alpha and BDNF gene expression in a mouse model of Huntington’s disease. Neurobiol Dis 41(1):43–50CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Snyder-Keller A, McLear JA, Hathorn T, Messer A (2010) Early or late-stage anti-N-terminal Huntingtin intrabody gene therapy reduces pathological features in B6.HDR6/1 mice. J Neuropathol Exp Neurol 69(10):1078–1085CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Colby DW, Garg P, Holden T, Chao G, Webster JM, Messer A et al (2004) Development of a human light chain variable domain (V(L)) intracellular antibody specific for the amino terminus of huntingtin via yeast surface display. J Mol Biol 342(3):901–912CrossRefPubMedGoogle Scholar
  24. 24.
    Colby DW, Chu Y, Cassady JP, Duennwald M, Zazulak H, Webster JM et al (2004) Potent inhibition of huntingtin aggregation and cytotoxicity by a disulfide bond-free single-domain intracellular antibody. Proc Natl Acad Sci U S A 101(51):17616–17621CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Southwell AL, Ko J, Patterson PH (2009) Intrabody gene therapy ameliorates motor, cognitive, and neuropathological symptoms in multiple mouse models of Huntington’s disease. J Neurosci 29(43):13589–13602CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Southwell AL, Khoshnan A, Dunn DE, Bugg CW, Lo DC, Patterson PH (2008) Intrabodies binding the proline-rich domains of mutant huntingtin increase its turnover and reduce neurotoxicity. J Neurosci 28(36):9013–9020CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Butler DC, Snyder-Keller A, De Genst E, Messer A (2014) Differential nuclear localization of complexes may underlie in vivo intrabody efficacy in Huntington’s disease. Protein Eng Des Sel 27(10):359–363CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Rockabrand E, Slepko N, Pantalone A, Nukala VN, Kazantsev A, Marsh JL et al (2007) The first 17 amino acids of Huntingtin modulate its sub-cellular localization, aggregation and effects on calcium homeostasis. Hum Mol Genet 16(1):61–77CrossRefPubMedGoogle Scholar
  29. 29.
    Qin ZH, Wang Y, Sapp E, Cuiffo B, Wanker E, Hayden MR et al (2004) Huntingtin bodies sequester vesicle-associated proteins by a polyproline-dependent interaction. J Neurosci 24(1):269–281CrossRefPubMedGoogle Scholar
  30. 30.
    Ko J, Ou S, Patterson PH (2001) New anti-huntingtin monoclonal antibodies: implications for huntingtin conformation and its binding proteins. Brain Res Bull 56(3-4):319–329CrossRefPubMedGoogle Scholar
  31. 31.
    Khoshnan A, Ko J, Patterson PH (2002) Effects of intracellular expression of anti-huntingtin antibodies of various specificities on mutant huntingtin aggregation and toxicity. Proc Natl Acad Sci U S A 99(2):1002–1007CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Southwell AL, Bugg CW, Kaltenbach LS, Dunn D, Butland S, Weiss A et al (2011) Perturbation with intrabodies reveals that calpain cleavage is required for degradation of huntingtin exon 1. PLoS One 6(1):e16676CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Smith DL, Portier R, Woodman B, Hockly E, Mahal A, Klunk WE et al (2001) Inhibition of polyglutamine aggregation in R6/2 HD brain slices-complex dose-response profiles. Neurobiol Dis 8(6):1017–1026CrossRefPubMedGoogle Scholar
  34. 34.
    Wang CE, Zhou H, McGuire JR, Cerullo V, Lee B, Li SH et al (2008) Suppression of neuropil aggregates and neurological symptoms by an intracellular antibody implicates the cytoplasmic toxicity of mutant huntingtin. J Cell Biol 181(5):803–816CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Rechsteiner M, Rogers SW (1996) PEST sequences and regulation by proteolysis. Trends Biochem Sci 21(7):267–271CrossRefPubMedGoogle Scholar
  36. 36.
    Butler DC, Messer A (2011) Bifunctional anti-huntingtin proteasome-directed intrabodies mediate efficient degradation of mutant huntingtin exon 1 protein fragments. PLoS One 6(12):e29199CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Verhoef LG, Lindsten K, Masucci MG, Dantuma NP (2002) Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Hum Mol Genet 11(22):2689–2700CrossRefPubMedGoogle Scholar
  38. 38.
    Ravikumar B, Duden R, Rubinsztein DC (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11(9):1107–1117CrossRefPubMedGoogle Scholar
  39. 39.
    Rose C, Menzies FM, Renna M, Acevedo-Arozena A, Corrochano S, Sadiq O et al (2010) Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington’s disease. Hum Mol Genet 19(11):2144–2153CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sarkar S, Rubinsztein DC (2008) Huntington’s disease: degradation of mutant huntingtin by autophagy. FEBS J 275(17):4263–4270CrossRefPubMedGoogle Scholar
  41. 41.
    Bauer PO, Goswami A, Wong HK, Okuno M, Kurosawa M, Yamada M et al (2010) Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nat Biotechnol 28(3):256–263CrossRefPubMedGoogle Scholar
  42. 42.
    Spencer B, Emadi S, Desplats P, Eleuteri S, Michael S, Kosberg K et al (2014) ESCRT mediated uptake and degradation of brain targeted alpha-synuclein-single chain antibody attenuates neuronal degeneration in vivo. Mol Ther 22(10):1753–1767CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Messer A (2014) Engineered antibody therapies coming of age for aging brains. Mol Ther 22(10):1725–1727CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kwan W, Trager U, Davalos D, Chou A, Bouchard J, Andre R et al (2012) Mutant huntingtin impairs immune cell migration in Huntington disease. J Clin Invest 122(12):4737–4747CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wild E, Magnusson A, Lahiri N, Krus U, Orth M, Tabrizi SJ et al (2011) Abnormal peripheral chemokine profile in Huntington’s disease. PLoS Curr 3:RRN1231CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Strand AD, Aragaki AK, Shaw D, Bird T, Holton J, Turner C et al (2005) Gene expression in Huntington’s disease skeletal muscle: a potential biomarker. Hum Mol Genet 14(13):1863–1876CrossRefPubMedGoogle Scholar
  47. 47.
    Wood NI, Goodman AO, van der Burg JM, Gazeau V, Brundin P, Bjorkqvist M et al (2008) Increased thirst and drinking in Huntington’s disease and the R6/2 mouse. Brain Res Bull 76(1-2):70–79CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Neural Stem Cell InstituteRensselaerUSA

Personalised recommendations