Skip to main content

Anti-Microtubule Drugs

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1413))

Abstract

Small molecule drugs that target microtubules (MTs), many of them natural products, have long been important tools in the MT field. Indeed, tubulin (Tb) was discovered, in part, as the protein binding partner of colchicine. Several anti-MT drug classes also have important medical uses, notably colchicine, which is used to treat gout, familial Mediterranean fever (FMF), and pericarditis, and the vinca alkaloids and taxanes, which are used to treat cancer. Anti-MT drugs have in common that they bind specifically to Tb in the dimer, MT or some other form. However, their effects on polymerization dynamics and on the human body differ markedly. Here we briefly review the most-studied molecules, and comment on their uses in basic research and medicine. Our focus is on practical applications of different anti-MT drugs in the laboratory, and key points that users should be aware of when designing experiments. We also touch on interesting unsolved problems, particularly in the area of medical applications. In our opinion, the mechanism by which any MT drug cures or treats any disease is still unsolved, despite decades of research. Solving this problem for particular drug–disease combinations might open new uses for old drugs, or provide insights into novel routes for treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Caner JE (1965) Colchicine inhibition of chemotaxis. Arthritis Rheum 8(5):757–764

    Article  CAS  PubMed  Google Scholar 

  2. Xi J, Zhu X, Feng Y et al (2013) Development of a novel class of tubulin inhibitors with promising anticancer activities. Mol Cancer Res 11(8):856–864. doi:10.1158/1541-7786.MCR-12-0177

    Article  CAS  PubMed  Google Scholar 

  3. Rowinsky EK (2011) Antimitotic Drugs. In: Chabner BA, Longo DL (eds) Cancer Chemotherapy and Biotherapy: Principles and Practice. Lippincott Williams & Wilkins, Philadelphia, p 848

    Google Scholar 

  4. Fujikawa-Yamamoto K, Teraoka K, Zong ZP et al (1994) Apoptosis by demecolcine in V79 cells. Cell Struct Funct 19(6):391–396

    Article  CAS  PubMed  Google Scholar 

  5. Lin CM, Singh SB, Chu PS et al (1988) Interactions of tubulin with potent natural and synthetic analogs of the antimitotic agent combretastatin: a structure-activity study. Mol Pharmacol 34(2):200–208

    CAS  PubMed  Google Scholar 

  6. Rustin GJ, Galbraith SM, Anderson H et al (2003) Phase I clinical trial of weekly combretastatin A4 phosphate: clinical and pharmacokinetic results. J Clin Oncol 21(15):2815–2822. doi:10.1200/JCO.2003.05.185

    Article  CAS  PubMed  Google Scholar 

  7. Xu K, Schwarz PM, Luduena RF (2002) Interaction of nocodazole with tubulin isotypes. Drug Dev Res 55(2):91–96. doi:10.1002/ddr.10023

    Article  CAS  Google Scholar 

  8. Gupta K, Bishop J, Peck A et al (2004) Antimitotic antifungal compound benomyl inhibits brain microtubule polymerization and dynamics and cancer cell proliferation at mitosis, by binding to a novel site in tubulin. Biochemistry 43(21):6645–6655. doi:10.1021/bi036112v

    Article  CAS  PubMed  Google Scholar 

  9. Shan B, Medina JC, Santha E et al (1999) Selective, covalent modification of beta-tubulin residue Cys-239 by T138067, an antitumor agent with in vivo efficacy against multidrug-resistant tumors. Proc Natl Acad Sci U S A 96(10):5686–5691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ngan VK, Bellman K, Hill BT et al (2001) Mechanism of mitotic block and inhibition of cell proliferation by the semisynthetic Vinca alkaloids vinorelbine and its newer derivative vinflunine. Mol Pharmacol 60(1):225–232

    CAS  PubMed  Google Scholar 

  11. Nelson RL, Dyke RW, Root MA (1980) Comparative pharmacokinetics of vindesine, vincristine and vinblastine in patients with cancer. Cancer Treat Rev 7(Suppl):117–124

    Google Scholar 

  12. Jackson DVJ, Bender RA (1979) Cytotoxic thresholds of vincristine in a murine and a human leukemia cell line in vitro. Cancer Res 39(11):4346–4349

    CAS  PubMed  Google Scholar 

  13. Liebmann JE, Cook JA, Lipschultz C et al (1993) Cytotoxic studies of paclitaxel (Taxol) in human tumour cell lines. Br J Cancer 68(6):1104–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Riou JF, Naudin A, Lavelle F (1992) Effects of Taxotere on murine and human tumor cell lines. Biochem Biophys Res Commun 187(1):164–170

    Article  CAS  PubMed  Google Scholar 

  15. Swami U, Chaudhary I, Ghalib MH et al (2012) Eribulin -- a review of preclinical and clinical studies. Crit Rev Oncol Hematol 81(2):163–184. doi:10.1016/j.critrevonc.2011.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  16. Goel S, Mita AC, Mita M et al (2009) A phase I study of eribulin mesylate (E7389), a mechanistically novel inhibitor of microtubule dynamics, in patients with advanced solid malignancies. Clin Cancer Res 15(12):4207–4212. doi:10.1158/1078-0432.CCR-08-2429

    Article  CAS  PubMed  Google Scholar 

  17. Nogales E, Wolf SG, Khan IA et al (1995) Structure of tubulin at 6.5 A and location of the taxol-binding site. Nature 375(6530):424–427. doi:10.1038/375424a0

    Article  CAS  PubMed  Google Scholar 

  18. Lowe J, Li H, Downing KH et al (2001) Refined structure of alpha beta-tubulin at 3.5 A resolution. J Mol Biol 313(5):1045–1057. doi:10.1006/jmbi.2001.5077

    Article  CAS  PubMed  Google Scholar 

  19. Gigant B, Wang C, Ravelli RB et al (2005) Structural basis for the regulation of tubulin by vinblastine. Nature 435(7041):519–522. doi:10.1038/nature03566

    Article  CAS  PubMed  Google Scholar 

  20. Prota AE, Bargsten K, Zurwerra D et al (2013) Molecular Mechanism of Action of Microtubule-Stabilizing Anticancer Agents. Science. doi:10.1126/science.1230582

    PubMed  Google Scholar 

  21. Madoc-Jones H, Mauro F (1968) Interphase action of vinblastine and vincristine: differences in their lethal action through the mitotic cycle of cultured mammalian cells. J Cell Physiol 72(3):185–196. doi:10.1002/jcp.1040720306

    Article  CAS  PubMed  Google Scholar 

  22. Stryckmans PA, Lurie PM, Manaster J et al (1973) Mode of action of chemotherapy in vivo on human acute leukemia—II. Vincristine. Eur J Cancer 9(9):613–620

    Article  CAS  PubMed  Google Scholar 

  23. Rosner F, Hirshaut Y, Grunwald HW et al (1975) In vitro combination chemotherapy demonstrating potentiation of vincristine cytotoxicity by prednisolone. Cancer Res 35(3):700–705

    CAS  PubMed  Google Scholar 

  24. Rowinsky EK, Donehower RC, Jones RJ et al (1988) Microtubule changes and cytotoxicity in leukemic cell lines treated with taxol. Cancer Res 48(14):4093–4100

    CAS  PubMed  Google Scholar 

  25. Jordan A, Hadfield JA, Lawrence NJ et al (1998) Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med Res Rev 18(4):259–296

    Article  CAS  PubMed  Google Scholar 

  26. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4(4):253–265. doi:10.1038/nrc1317

    Article  CAS  PubMed  Google Scholar 

  27. Rowinsky EK (2010) MIcrotubule-targeting natural products. In: Hong WK (ed) Holland Frei cancer medicine 8. People’s Medical Pub, House, Shelton, CT, p xxv, 2,021

    Google Scholar 

  28. Jordan MA, Wilson L (1999) The use and action of drugs in analyzing mitosis. Methods Cell Biol 61267–295

    Google Scholar 

  29. Dumontet C, Jordan MA (2010) Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 9(10):790–803. doi:10.1038/nrd3253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Field JJ, Kanakkanthara A, Miller JH (2014) Microtubule-targeting agents are clinically successful due to both mitotic and interphase impairment of microtubule function. Bioorg Med Chem. doi:10.1016/j.bmc.2014.02.035

    PubMed  Google Scholar 

  31. Eigsti OJ, Dustin P (1955) Colchicine in agriculture, medicine, biology and chemistry. State College Press, Ames, Iowa

    Google Scholar 

  32. Dustin P (2011) Softcover reprint of the original 2nd ed. 1984 Edition, 2nd edn. Springer, Berlin

    Google Scholar 

  33. B P Sulla cariocinesi delle cellule epiteliali e dell’ endotelio dei vasi della mucosa dello stomaco et dell’ intestino, nelle studio della gastroenterite sperimentale (nell’avvelenamento per colchico). Sicilia Med 1265–1279.

    Google Scholar 

  34. Borisy GG, Taylor EW (1967) The mechanism of action of colchicine. Binding of colchicine-3H to cellular protein. J Cell Biol 34(2):525–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mohri H (1968) Amino-acid composition of “Tubulin” constituting microtubules of sperm flagella. Nature 217(5133):1053–1054

    Article  CAS  PubMed  Google Scholar 

  36. Markel G, Imazio M, Brucato A et al (2013) Prevention of recurrent pericarditis with colchicine in 2012. Clin Cardiol 36(3):125–128. doi:10.1002/clc.22098

    Article  PubMed  Google Scholar 

  37. Ter Haar NM, Frenkel J (2014) Treatment of hereditary autoinflammatory diseases. Curr Opin Rheumatol 26(3):252–258. doi:10.1097/BOR.0000000000000059

    Article  PubMed  Google Scholar 

  38. Cocco G, Chu DC, Pandolfi S (2010) Colchicine in clinical medicine. A guide for internists. Eur J Intern Med 21(6):503–508. doi:10.1016/j.ejim.2010.09.010

    Article  CAS  PubMed  Google Scholar 

  39. Ravelli RB, Gigant B, Curmi PA et al (2004) Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428(6979):198–202. doi:10.1038/nature02393

    Article  CAS  PubMed  Google Scholar 

  40. Barbier P, Dorleans A, Devred F et al (2010) Stathmin and interfacial microtubule inhibitors recognize a naturally curved conformation of tubulin dimers. J Biol Chem 285(41):31672–31681. doi:10.1074/jbc.M110.141929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Taylor EW (1965) The mechanism of colchicine inhibition of mitosis. I. Kinetics of inhibition and the binding of H3-colchicine. J Cell Biol 25(Suppl):145–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Olmsted JB, Borisy GG (1973) Characterization of microtubule assembly in porcine brain extracts by viscometry. Biochemistry 12(21):4282–4289

    Article  CAS  PubMed  Google Scholar 

  43. Bergen LG, Borisy GG (1983) Tubulin-colchicine complex inhibits microtubule elongation at both plus and minus ends. J Biol Chem 258(7):4190–4194

    CAS  PubMed  Google Scholar 

  44. Fernando Diaz J, Andreu JM (1991) Kinetics of dissociation of the tubulin-colchicine complex. Complete reaction scheme and comparison to thermodynamic measurements. J Biol Chem 266(5):2890–2896

    CAS  PubMed  Google Scholar 

  45. Santavy F, Reichstein T (1950) Isolierung neuer Stoffe aus den Samen der Herbstzeitlose Colchicum autumnale L. Substanzen der Herbstzeitlose und ihre Derivate. 12. Mitteilung. Helvetica Chimica Acta 33(6):1606–1627

    Article  CAS  Google Scholar 

  46. Ray K, Bhattacharyya B, Biswas BB (1984) Anion-induced increases in the affinity of colcemid binding to tubulin. Eur J Biochem 142(3):577–581

    Article  CAS  PubMed  Google Scholar 

  47. Chapman OL, Smith HG, King RW (1963) The Structure of β-Lumicolchicine. J Am Chem Soc 85(6):803–806. doi:10.1021/ja00889a031

    Article  CAS  Google Scholar 

  48. Hamaguchi MS, Hiramoto Y (1986) Analysis of the Role of Astral Rays in Pronuclear Migration in Sand Dollar Eggs by the Colcemid-UV Method. Dev Growth Differ 28(2):143

    Article  Google Scholar 

  49. Pettit GR, Singh SB, Boyd MR et al (1995) Antineoplastic agents. 291. Isolation and synthesis of combretastatins A-4, A-5, and A-6(1a). J Med Chem 38(10):1666–1672

    Article  CAS  PubMed  Google Scholar 

  50. Lin CM, Ho HH, Pettit GR et al (1989) Antimitotic natural products combretastatin A-4 and combretastatin A-2: studies on the mechanism of their inhibition of the binding of colchicine to tubulin. Biochemistry 28(17):6984–6991

    Article  CAS  PubMed  Google Scholar 

  51. Griggs J, Metcalfe JC, Hesketh R (2001) Targeting tumour vasculature: the development of combretastatin A4. Lancet Oncol 2(2):82–87. doi:10.1016/S1470-2045(00)00224-2

    Article  CAS  PubMed  Google Scholar 

  52. Wuhr M, Tan ES, Parker SK et al (2010) A model for cleavage plane determination in early amphibian and fish embryos. Curr Biol 20(22):2040–2045. doi:10.1016/j.cub.2010.10.024

    Article  PubMed  PubMed Central  Google Scholar 

  53. De Brabander MJ, Van de Veire RM, Aerts FE et al (1976) The effects of methyl (5-(2-thienylcarbonyl)-1H-benzimidazol-2-yl) carbamate, (R 17934; NSC 238159), a new synthetic antitumoral drug interfering with microtubules, on mammalian cells cultured in vitro. Cancer Res 36(3):905–916

    PubMed  Google Scholar 

  54. DeBonis S, Skoufias DA, Lebeau L et al (2004) In vitro screening for inhibitors of the human mitotic kinesin Eg5 with antimitotic and antitumor activities. Mol Cancer Ther 3(9):1079–1090

    CAS  PubMed  Google Scholar 

  55. Hu CK, Ozlu N, Coughlin M et al (2012) Plk1 negatively regulates PRC1 to prevent premature midzone formation before cytokinesis. Mol Biol Cell 23(14):2702–2711. doi:10.1091/mbc.E12-01-0058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu CK, Coughlin M, Field CM et al (2008) Cell polarization during monopolar cytokinesis. J Cell Biol 181(2):195–202. doi:10.1083/jcb.200711105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Neff NF, Thomas JH, Grisafi P et al (1983) Isolation of the beta-tubulin gene from yeast and demonstration of its essential function in vivo. Cell 33(1):211–219

    Article  CAS  PubMed  Google Scholar 

  58. Straight AF, Murray AW (1997) The spindle assembly checkpoint in budding yeast. Methods Enzymol 283425–440

    Google Scholar 

  59. Kirby S, Gertler SZ, Mason W et al (2005) Phase 2 study of T138067-sodium in patients with malignant glioma: Trial of the National Cancer Institute of Canada Clinical Trials Group. Neuro Oncol 7(2):183–188. doi:10.1215/S1152851704000602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Berlin JD, Venook A, Bergsland E et al (2008) Phase II trial of T138067, a novel microtubule inhibitor, in patients with metastatic, refractory colorectal carcinoma. Clin Colorectal Cancer 7(1):44–47. doi:10.3816/CCC.2008.n.006

    Article  CAS  PubMed  Google Scholar 

  61. Tannock I (1978) Cell kinetics and chemotherapy: a critical review. Cancer Treat Rep 62(8):1117–1133

    CAS  PubMed  Google Scholar 

  62. Komlodi-Pasztor E, Sackett D, Wilkerson J et al (2011) Mitosis is not a key target of microtubule agents in patient tumors. Nat Rev Clin Oncol 8(4):244–250. doi:10.1038/nrclinonc.2010.228

    Article  CAS  PubMed  Google Scholar 

  63. Mitchison TJ (2012) The proliferation rate paradox in antimitotic chemotherapy. Mol Biol Cell 23(1):1–6. doi:10.1091/mbc.E10-04-0335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Weaver BA (2014) How Taxol/paclitaxel kills cancer cells. Mol Biol Cell 25(18):2677–2681. doi:10.1091/mbc.E14-04-0916

    Article  PubMed  PubMed Central  Google Scholar 

  65. Komlodi-Pasztor E, Sackett DL, Fojo AT (2012) Inhibitors targeting mitosis: tales of how great drugs against a promising target were brought down by a flawed rationale. Clin Cancer Res 18(1):51–63. doi:10.1158/1078-0432.CCR-11-0999

    Article  CAS  PubMed  Google Scholar 

  66. Paff GH (1939) The action of colchicine upon the 48-hour chick embryo. Am J Anat 64(2):331–349

    Article  Google Scholar 

  67. Crossin KL, Carney DH (1981) Evidence that microtubule depolymerization early in the cell cycle is sufficient to initiate DNA synthesis. Cell 23(1):61–71

    Article  CAS  PubMed  Google Scholar 

  68. Vasiliev JM, Gelfand IM, Domnina LV et al (1970) Effect of colcemid on the locomotory behaviour of fibroblasts. J Embryol Exp Morphol 24(3):625–640

    CAS  PubMed  Google Scholar 

  69. Schiff PB, Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A 77(3):1561–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhu ML, Horbinski CM, Garzotto M et al (2010) Tubulin-targeting chemotherapy impairs androgen receptor activity in prostate cancer. Cancer Res 70(20):7992–8002. doi:10.1158/0008-5472.CAN-10-0585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ng DH, Humphries JD, Byron A et al (2014) Microtubule-Dependent Modulation of Adhesion Complex Composition. PLoS One 9(12), e115213. doi:10.1371/journal.pone.0115213

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wang TH, Wang HS, Ichijo H et al (1998) Microtubule-interfering agents activate c-Jun N-terminal kinase/stress-activated protein kinase through both Ras and apoptosis signal-regulating kinase pathways. J Biol Chem 273(9):4928–4936

    Article  CAS  PubMed  Google Scholar 

  73. Sendoel A, Maida S, Zheng X et al (2014) DEPDC1/LET-99 participates in an evolutionarily conserved pathway for anti-tubulin drug-induced apoptosis. Nat Cell Biol 16(8):812–820. doi:10.1038/ncb3010

    Article  CAS  PubMed  Google Scholar 

  74. Noble RL, Beer CT, Cutts JH (1958) Role of chance observations in chemotherapy: Vinca rosea. Ann N Y Acad Sci 76(3):882–894

    Article  CAS  PubMed  Google Scholar 

  75. Aherne WA, Camplejohn RS, Wright NA (1977) An introduction to cell population kinetics. Edward Arnold, London

    Google Scholar 

  76. Tannock IF (1967) A comparison of the relative efficiencies of various metaphase arrest agents. Exp Cell Res 47(1):345–356

    Article  CAS  Google Scholar 

  77. Tanaka E, Ho T, Kirschner MW (1995) The role of microtubule dynamics in growth cone motility and axonal growth. J Cell Biol 128(1-2):139–155

    Article  CAS  PubMed  Google Scholar 

  78. Bensch KG, Malawista SE (1969) Microtubular crystals in mammalian cells. J Cell Biol 40(1):95–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Starling D, Burns RG (1975) Ultrastructure of tubulin paracrystals from sea urchin eggs, with determination of spacings by electron and optical diffraction. J Ultrastruct Res 51(2):261–268

    Article  CAS  PubMed  Google Scholar 

  80. Cleveland DW, Lopata MA, Sherline P et al (1981) Unpolymerized tubulin modulates the level of tubulin mRNAs. Cell 25(2):537–546

    Article  CAS  PubMed  Google Scholar 

  81. Wani MC, Taylor HL, Wall ME et al (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93(9):2325–2327

    Article  CAS  PubMed  Google Scholar 

  82. Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277(5698):665–667

    Article  CAS  PubMed  Google Scholar 

  83. Schiff PB, Horwitz SB (1981) Taxol assembles tubulin in the absence of exogenous guanosine 5′-triphosphate or microtubule-associated proteins. Biochemistry 20(11):3247–3252

    Article  CAS  PubMed  Google Scholar 

  84. Gueritte-Voegelein F, Guenard D, Lavelle F et al (1991) Relationships between the structure of taxol analogues and their antimitotic activity. J Med Chem 34(3):992–998

    Article  CAS  PubMed  Google Scholar 

  85. Nogales E, Wolf SG, Downing KH (1998) Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391(6663):199–203. doi:10.1038/34465

    Article  CAS  PubMed  Google Scholar 

  86. Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42(1):39–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zasadil LM, Andersen KA, Yeum D et al (2014) Cytotoxicity of Paclitaxel in Breast Cancer Is due to Chromosome Missegregation on Multipolar Spindles. Sci Transl Med 6(229): 229ra43. doi:10.1126/scitranslmed.3007965

    Google Scholar 

  88. Yang Z, Kenny AE, Brito DA et al (2009) Cells satisfy the mitotic checkpoint in Taxol, and do so faster in concentrations that stabilize syntelic attachments. J Cell Biol 186(5):675–684. doi:10.1083/jcb.200906150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vallee RB (1982) A taxol-dependent procedure for the isolation of microtubules and microtubule-associated proteins (MAPs). J Cell Biol 92(2):435–442

    Article  CAS  PubMed  Google Scholar 

  90. Souto AA, Acuña AU, Andreu JM et al (1996) New Fluorescent Water‐Soluble Taxol Derivatives. Angew Chem Int Ed Engl 34(23‐24):2710–2712

    Article  Google Scholar 

  91. Evangelio JA, Abal M, Barasoain I et al (1998) Fluorescent taxoids as probes of the microtubule cytoskeleton. Cell Motil Cytoskeleton 39(1):73–90. doi:10.1002/(SICI)1097-0169(1998)39:1<73::AID-CM7>3.0.CO;2-H

    Article  CAS  PubMed  Google Scholar 

  92. Diaz JF, Strobe R, Engelborghs Y et al (2000) Molecular recognition of taxol by microtubules. Kinetics and thermodynamics of binding of fluorescent taxol derivatives to an exposed site. J Biol Chem 275(34):26265–26276. doi:10.1074/jbc.M003120200

    Article  CAS  PubMed  Google Scholar 

  93. Rusan NM, Fagerstrom CJ, Yvon AM et al (2001) Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein-alpha tubulin. Mol Biol Cell 12(4):971–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lukinavicius G, Reymond L, D’Este E et al (2014) Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat Methods 11(7):731–733. doi:10.1038/nmeth.2972

    Article  CAS  PubMed  Google Scholar 

  95. Smith JA, Wilson L, Azarenko O et al (2010) Eribulin binds at microtubule ends to a single site on tubulin to suppress dynamic instability. Biochemistry 49(6):1331–1337. doi:10.1021/bi901810u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Alday PH, Correia JJ (2009) Macromolecular interaction of halichondrin B analogues eribulin (E7389) and ER-076349 with tubulin by analytical ultracentrifugation. Biochemistry 48(33):7927–7938. doi:10.1021/bi900776u

    Article  CAS  PubMed  Google Scholar 

  97. Wozniak KM, Nomoto K, Lapidus RG et al (2011) Comparison of neuropathy-inducing effects of eribulin mesylate, paclitaxel, and ixabepilone in mice. Cancer Res 71(11):3952–3962. doi:10.1158/0008-5472.CAN-10-4184

    Article  CAS  PubMed  Google Scholar 

  98. Laughney AM, Kim E, Sprachman MM et al (2014) Single-cell pharmacokinetic imaging reveals a therapeutic strategy to overcome drug resistance to the microtubule inhibitor eribulin. Sci Transl Med 6(261): 261ra152. doi:10.1126/scitranslmed.3009318

    Google Scholar 

Download references

Acknowledgements/Funding

Stefan Florian is supported by a Research Fellowship (FL 820-1/1) from the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Mitchison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Florian, S., Mitchison, T.J. (2016). Anti-Microtubule Drugs. In: Chang, P., Ohi, R. (eds) The Mitotic Spindle. Methods in Molecular Biology, vol 1413. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3542-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3542-0_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3540-6

  • Online ISBN: 978-1-4939-3542-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics