Skip to main content

Using Cell Culture Models of Centrosome Amplification to Study Centrosome Clustering in Cancer

  • Protocol
  • First Online:
The Mitotic Spindle

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1413))

Abstract

The link between centrosome amplification and cancer has been recognized for more than a century, raising many key questions about the biology of both normal and cancer cells. In particular, the presence of extra centrosomes imposes a great challenge to a dividing cell by increasing the likelihood of catastrophic multipolar divisions. Only recently have we begun to understand how cancer cells successfully divide by clustering their extra centrosomes for bipolar division. Several hurdles to dissecting centrosome clustering include limitations in the methodologies used to quantify centrosome amplification, and the lack of appropriate cell culture models. Here, we describe how to accurately assess centrosome number and create isogenic cell lines with or without centrosome amplification. We then describe how imaging of cell division in these cell culture models leads to identification of the molecular machinery uniquely required for cells with extra centrosomes. These approaches have led to the identification of molecular targets for selective cancer therapeutics that can kill cancer cells with extra centrosomes without affecting normal cells with two centrosomes. We further anticipate that the approaches described here will be broadly applicable for studying the causes and consequences of centrosome amplification in a variety of contexts across cancer pathophysiology, such as cell migration and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bettencourt-Dias M, Glover DM (2007) Centrosome biogenesis and function: centrosomics brings new understanding. Nat Rev Mol Cell Biol 8(6):451–463.

    Article  CAS  PubMed  Google Scholar 

  2. Nigg EA (2007) Centrosome duplication: of rules and licenses. Trends Cell Biol 17(5):215–221.

    Article  CAS  PubMed  Google Scholar 

  3. Chan JY (2011) A clinical overview of centrosome amplification in human cancers. Int J Biol Sci 7(8):1122–1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nigg EA (2002) Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2(11):815–825.

    Article  CAS  PubMed  Google Scholar 

  5. Boveri T (2008) Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci 121(Suppl 1):1–84.

    Article  PubMed  Google Scholar 

  6. Galeotti G (1893) Beitrag zum Studium des Chromatins in den Epithelzellen der Carcinome. Beitr Pathol Anat Allg Pathol 14:249–271.

    Google Scholar 

  7. Hardy PA, Zacharias H (2005) Reappraisal of the Hansemann-Boveri hypothesis on the origin of tumors. Cell Biol Int 29(12):983–992.

    Article  PubMed  Google Scholar 

  8. Ring D, Hubble R, Kirschner M (1982) Mitosis in a cell with multiple centrioles. J Cell Biol 94(3):549–556.

    Article  CAS  PubMed  Google Scholar 

  9. Brinkley BR (2001) Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends Cell Biol 11(1):18–21.

    Article  CAS  PubMed  Google Scholar 

  10. Quintyne NJ, Reing JE, Hoffelder DR, Gollin SM, Saunders WS (2005) Spindle multipolarity is prevented by centrosomal clustering. Science 307(5706):127–129.

    Article  CAS  PubMed  Google Scholar 

  11. Acilan C, Saunders WS (2008) A tale of too many centrosomes. Cell 134(4):572–575.

    Article  CAS  PubMed  Google Scholar 

  12. Kwon M, Godinho SA, Chandhok NS, Ganem NJ, Azioune A, Thery M, Pellman D (2008) Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 22(16):2189–2203.

    Google Scholar 

  13. Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460(7252):278–282.

    Google Scholar 

  14. Silkworth WT, Nardi IK, Scholl LM, Cimini D (2009) Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS One 4(8), e6564.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Basto R, Brunk K, Vinadogrova T, Peel N, Franz A, Khodjakov A, Raff JW (2008) Centrosome amplification can initiate tumorigenesis in flies. Cell 133(6):1032–1042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schvartzman JM, Sotillo R, Benezra R (2010) Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat Rev Cancer 10(2):102–115.

    Article  CAS  PubMed  Google Scholar 

  17. Godinho SA, Picone R, Burute M, Dagher R, Su Y, Leung CT, Polyak K, Brugge JS, Thery M, Pellman D (2014) Oncogene-like induction of cellular invasion from centrosome amplification. Nature 510(7503):167–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lingle WL, Lutz WH, Ingle JN, Maihle NJ, Salisbury JL (1998) Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc Natl Acad Sci U S A 95(6):2950–2955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mennella V, Agard DA, Huang B, Pelletier L (2014) Amorphous no more: subdiffraction view of the pericentriolar material architecture. Trends Cell Biol 24(3):188–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leber B, Maier B, Fuchs F, Chi J, Riffel P, Anderhub S, Wagner L, Ho AD, Salisbury JL, Boutros M, Kramer A (2010) Proteins required for centrosome clustering in cancer cells. Sci Transl Med 2(33):33ra38.

    Article  PubMed  Google Scholar 

  21. Drosopoulos K, Tang C, Chao WC, Linardopoulos S (2014) APC/C is an essential regulator of centrosome clustering. Nat Commun 5:3686.

    Article  CAS  PubMed  Google Scholar 

  22. Yang Z, Loncarek J, Khodjakov A, Rieder CL (2008) Extra centrosomes and/or chromosomes prolong mitosis in human cells. Nat Cell Biol 10(6):748–751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fielding AB, Lim S, Montgomery K, Dobreva I, Dedhar S (2011) A critical role of integrin-linked kinase, ch-TOG and TACC3 in centrosome clustering in cancer cells. Oncogene 30(5):521–534.

    Article  CAS  PubMed  Google Scholar 

  24. Jackson JR, Patrick DR, Dar MM, Huang PS (2007) Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat Rev Cancer 7(2):107–117.

    Article  CAS  PubMed  Google Scholar 

  25. Endow SA, Komma DJ (1998) Assembly and dynamics of an anastral:astral spindle: the meiosis II spindle of Drosophila oocytes. J Cell Sci 111(Pt 17):2487–2495.

    CAS  PubMed  Google Scholar 

  26. Mountain V, Simerly C, Howard L, Ando A, Schatten G, Compton DA (1999) The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. J Cell Biol 147(2):351–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Watts CA, Richards FM, Bender A, Bond PJ, Korb O, Kern O, Riddick M, Owen P, Myers RM, Raff J, Gergely F, Jodrell DI, Ley SV (2013) Design, synthesis, and biological evaluation of an allosteric inhibitor of HSET that targets cancer cells with supernumerary centrosomes. Chem Biol 20(11):1399–1410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu J, Mikule K, Wang W, Su N, Petteruti P, Gharahdaghi F, Code E, Zhu X, Jacques K, Lai Z, Yang B, Lamb ML, Chuaqui C, Keen N, Chen H (2013) Discovery and mechanistic study of a small molecule inhibitor for motor protein KIFC1. ACS Chem Biol 8(10):2201–2208.

    Article  CAS  PubMed  Google Scholar 

  29. Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD, Nigg EA (2007) Plk4-induced centriole biogenesis in human cells. Dev Cell 13(2):190–202.

    Article  CAS  PubMed  Google Scholar 

  30. Breuer M, Kolano A, Kwon M, Li CC, Tsai TF, Pellman D, Brunet S, Verlhac MH (2010) HURP permits MTOC sorting for robust meiotic spindle bipolarity, similar to extra centrosome clustering in cancer cells. J Cell Biol 191(7):1251–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kleylein-Sohn J, Pollinger B, Ohmer M, Hofmann F, Nigg EA, Hemmings BA, Wartmann M (2012) Acentrosomal spindle organization renders cancer cells dependent on the kinesin HSET. J Cell Sci 125(Pt 22):5391–5402.

    Article  CAS  PubMed  Google Scholar 

  32. Thery M, Bornens M (2006) Cell shape and cell division. Curr Opin Cell Biol 18(6):648–657.

    Article  CAS  PubMed  Google Scholar 

  33. Fink J, Carpi N, Betz T, Betard A, Chebah M, Azioune A, Bornens M, Sykes C, Fetler L, Cuvelier D, Piel M (2011) External forces control mitotic spindle positioning. Nat Cell Biol 13(7):771–778.

    Article  CAS  PubMed  Google Scholar 

  34. Ganem NJ, Pellman D (2007) Limiting the proliferation of polyploid cells. Cell 131(3):437–440.

    Article  CAS  PubMed  Google Scholar 

  35. Andreassen PR, Lohez OD, Lacroix FB, Margolis RL (2001) Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol Biol Cell 12(5):1315–1328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Holland AJ, Fachinetti D, Zhu Q, Bauer M, Verma IM, Nigg EA, Cleveland DW (2012) The autoregulated instability of Polo-like kinase 4 limits centrosome duplication to once per cell cycle. Genes Dev 26(24):2684–2689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kwiatkowski N, Jelluma N, Filippakopoulos P, Soundararajan M, Manak MS, Kwon M, Choi HG, Sim T, Deveraux QL, Rottmann S, Pellman D, Shah JV, Kops GJ, Knapp S, Gray NS (2010) Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function. Nat Chem Biol 6(5):359–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 2013.0467Kwon M, Bagonis M, Danuser G, Pellman D (2015) Direct microtubule-binding by Myosin-10 orients centrosomes towards retraction fibers and subcortical actin clouds. Dev Cell 34(3):323–37.

    Google Scholar 

  39. Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan Y, Nezi L, Protopopov A, Chowdhury D, Pellman D (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482(7383):53–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mitchison TJ (1992) Actin based motility on retraction fibers in mitotic PtK2 cells. Cell Motil Cytoskeleton 22(2):135–151.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This protocol is currently used in David Pellman laboratory and has been refined over the years by several people including Drs. S. Godinho and N. Ganem. We thank N. Umbreit, A. Spektor, Y. Kaplan, H. Zhang for discussions and/or comments on the manuscript; all members of the Pellman laboratory for advice and suggestions. M.K was supported by a special fellow award from the Leukemia and Lymphoma Society and a Susan G. Komen grant. Our work was supported by the Howard Hughes Medical Institute and the NIH (GM061345).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mijung Kwon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kwon, M. (2016). Using Cell Culture Models of Centrosome Amplification to Study Centrosome Clustering in Cancer. In: Chang, P., Ohi, R. (eds) The Mitotic Spindle. Methods in Molecular Biology, vol 1413. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3542-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3542-0_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3540-6

  • Online ISBN: 978-1-4939-3542-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics