Skip to main content

Using Photoactivatable GFP to Study Microtubule Dynamics and Chromosome Segregation

  • Protocol
  • First Online:
The Mitotic Spindle

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1413))

Abstract

Mitosis is a highly dynamic process during which the genetic material is equally distributed between two daughter cells. During mitosis, the sister chromatids of replicated chromosomes interact with dynamic microtubules and such interactions lead to stereotypical chromosome movements that eventually result in chromosome segregation and successful cell division. Approaches that allow quantification of microtubule dynamics and chromosome movements are of utmost importance for a mechanistic understanding of mitosis. In this chapter, we describe methods based on activation of photoactivatable green fluorescent protein (PA-GFP) that can be used for quantitative studies of microtubule dynamics and chromosome segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2(4):280–291

    Article  CAS  PubMed  Google Scholar 

  2. Cimini D (2008) Merotelic kinetochore orientation, aneuploidy, and cancer. Biochim Biophys Acta 1786(1):32–40

    CAS  PubMed  Google Scholar 

  3. Mitelman F, Johansson B, Mertens F (2014) Mitelman database of chromosome aberrations and gene fusions in cancer. http://cgap.nci.nih.gov/Chromosomes/Mitelman

  4. Weaver BA, Cleveland DW (2006) Does aneuploidy cause cancer? Curr Opin Cell Biol 18(6):658–667

    Article  CAS  PubMed  Google Scholar 

  5. Zhai Y, Kronebusch PJ, Borisy GG (1995) Kinetochore microtubule dynamics and the metaphase-anaphase transition. J Cell Biol 131(3):721–734

    Article  CAS  PubMed  Google Scholar 

  6. Bakhoum SF, Genovese G, Compton DA (2009) Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr Biol 19(22):1937–1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bakhoum SF et al (2014) The mitotic origin of chromosomal instability. Curr Biol 24(4):R148–R149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bakhoum SF et al (2009) Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nat Cell Biol 11(1):27–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mitchison TJ (1989) Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J Cell Biol 109(2):637–652

    Article  CAS  PubMed  Google Scholar 

  10. Cassimeris L et al (1990) Stability of microtubule attachment to metaphase kinetochores in PtK1 cells. J Cell Sci 96(Pt 1):9–15

    PubMed  Google Scholar 

  11. Waterman-Storer CM et al (1998) Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr Biol 8(22):1227–1230

    Article  CAS  PubMed  Google Scholar 

  12. Lippincott-Schwartz J, Patterson GH (2008) Fluorescent proteins for photoactivation experiments. Methods Cell Biol 85:45–61

    Article  CAS  PubMed  Google Scholar 

  13. Zhou XX, Lin MZ (2013) Photoswitchable fluorescent proteins: ten years of colorful chemistry and exciting applications. Curr Opin Chem Biol 17(4):682–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rieder CL, Hard R (1990) Newt lung epithelial cells: cultivation, use, and advantages for biomedical research. Int Rev Cytol 122:153–220

    Article  CAS  PubMed  Google Scholar 

  15. Schiff PB, Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A 77(3):1561–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cimini D et al (2006) Aurora kinase promotes turnover of kinetochore microtubules to reduce chromosome segregation errors. Curr Biol 16(17):1711–1718

    Article  CAS  PubMed  Google Scholar 

  17. DeLuca JG et al (2006) Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 127(5):969–982

    Article  CAS  PubMed  Google Scholar 

  18. Nicholson JM, Cimini D (2011) How mitotic errors contribute to karyotypic diversity in cancer. Adv Cancer Res 112:43–75

    Article  CAS  PubMed  Google Scholar 

  19. Nicholson JM, Cimini D (2013) Cancer karyotypes: survival of the fittest. Front Oncol 3:148

    Article  PubMed  PubMed Central  Google Scholar 

  20. Thompson SL, Compton DA (2008) Examining the link between chromosomal instability and aneuploidy in human cells. J Cell Biol 180(4):665–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lengauer C, Kinzler KW, Vogelstein B (1997) Genetic instability in colorectal cancers. Nature 386(6625):623–627

    Article  CAS  PubMed  Google Scholar 

  22. Cimini D et al (2003) Histone hyperacetylation in mitosis prevents sister chromatid separation and produces chromosome segregation defects. Mol Biol Cell 14(9):3821–3833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cimini D et al (2001) Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J Cell Biol 153(3):517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cimini D et al (2002) Merotelic kinetochore orientation versus chromosome mono-orientation in the origin of lagging chromosomes in human primary cells. J Cell Sci 115(Pt 3):507–515

    CAS  PubMed  Google Scholar 

  25. Kanda T, Sullivan KF, Wahl GM (1998) Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol 8(7):377–385

    Article  CAS  PubMed  Google Scholar 

  26. Cimini D, Tanzarella C, Degrassi F (1999) Differences in malsegregation rates obtained by scoring ana-telophases or binucleate cells. Mutagenesis 14(6):563–568

    Article  CAS  PubMed  Google Scholar 

  27. Torosantucci L et al (2009) Aneuploidy in mitosis of PtK1 cells is generated by random loss and nondisjunction of individual chromosomes. J Cell Sci 122(Pt 19):3455–3461

    Article  CAS  PubMed  Google Scholar 

  28. Robinett CC et al (1996) In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol 135(6 Pt 2):1685–1700

    Article  CAS  PubMed  Google Scholar 

  29. Thompson SL, Compton DA (2010) Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J Cell Biol 188(3):369–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thompson SL, Compton DA (2011) Chromosome missegregation in human cells arises through specific types of kinetochore-microtubule attachment errors. Proc Natl Acad Sci U S A 108(44):17974–17978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen B et al (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155(7):1479–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ma H et al (2015) Multicolor CRISPR labeling of chromosomal loci in human cells. Proc Natl Acad Sci U S A 112(10):3002–3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Skibbens RV, Skeen VP, Salmon ED (1993) Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J Cell Biol 122(4):859–875

    Article  CAS  PubMed  Google Scholar 

  34. Wan X et al (2012) The coupling between sister kinetochore directional instability and oscillations in centromere stretch in metaphase PtK1 cells. Mol Biol Cell 23(6):1035–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Civelekoglu-Scholey G et al (2013) Dynamic bonds and polar ejection force distribution explain kinetochore oscillations in PtK1 cells. J Cell Biol 201(4):577–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cameron LA et al (2006) Kinesin 5-independent poleward flux of kinetochore microtubules in PtK1 cells. J Cell Biol 173(2):173–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cimini D, Cameron LA, Salmon ED (2004) Anaphase spindle mechanics prevent mis-segregation of merotelically oriented chromosomes. Curr Biol 14(23):2149–2155

    Article  CAS  PubMed  Google Scholar 

  38. He B et al (2014) Chromosomes mis-segregated into micronuclei cause chromosomal instability by further mis-segregating at subsequent mitoses. Mol Biol Cell 25:P1839

    Google Scholar 

  39. Guimaraes GJ et al (2008) Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1. Curr Biol 18(22):1778–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stout JR et al (2006) Deciphering protein function during mitosis in PtK cells using RNAi. BMC Cell Biol 7:26

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dumont S, Salmon ED, Mitchison TJ (2012) Deformations within moving kinetochores reveal different sites of active and passive force generation. Science 337(6092):355–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shah JV et al (2004) Dynamics of centromere and kinetochore proteins; implications for checkpoint signaling and silencing. Curr Biol 14(11):942–952

    CAS  PubMed  Google Scholar 

  43. Canman J, Salmon E, Fang G (2002) Inducing precocious anaphase in cultured mammalian cells. Cell Motil Cyto 52:61–65

    Article  Google Scholar 

  44. Canman JC, Hoffman DB, Salmon ED (2000) The role of pre- and post-anaphase microtubules in the cytokinesis phase of the cell cycle. Curr Biol 10(10):611–614

    Article  CAS  PubMed  Google Scholar 

  45. Howell BJ et al (2000) Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells. J Cell Biol 150(6):1233–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shannon KB, Canman JC, Salmon ED (2002) Mad2 and BubR1 function in a single checkpoint pathway that responds to a loss of tension. Mol Biol Cell 13(10):3706–3719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. De Antoni A et al (2005) The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint. Curr Biol 15(3):214–225

    Article  PubMed  Google Scholar 

  48. Schulze E, Kirschner M (1988) New features of microtubule behaviour observed in vivo. Nature 334(6180):356–359

    Article  CAS  PubMed  Google Scholar 

  49. Mitchison TJ, Salmon ED (1992) Poleward kinetochore fiber movement occurs during both metaphase and anaphase-A in newt lung cell mitosis. J Cell Biol 119(3):569–582

    Article  CAS  PubMed  Google Scholar 

  50. Salmon ED et al (2007) A high-resolution multimode digital microscope system. Methods Cell Biol 81:187–218

    Article  CAS  PubMed  Google Scholar 

  51. Maffini S et al (2009) Motor-independent targeting of CLASPs to kinetochores by CENP-E promotes microtubule turnover and poleward flux. Curr Biol 19(18):1566–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297(5588):1873–1877

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Lisa Cameron (Dana Farber Cancer Institute) for critical reading of the manuscript. Funding in the Cimini lab provided by NSF grants MCB-0842551 and MCB-1517506 and HFSP grant RGY0069/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Cimini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

He, B., Cimini, D. (2016). Using Photoactivatable GFP to Study Microtubule Dynamics and Chromosome Segregation. In: Chang, P., Ohi, R. (eds) The Mitotic Spindle. Methods in Molecular Biology, vol 1413. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3542-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3542-0_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3540-6

  • Online ISBN: 978-1-4939-3542-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics