Skip to main content

Studying Kinetochores In Vivo Using FLIM-FRET

  • Protocol
  • First Online:
The Mitotic Spindle

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1413))

Abstract

Kinetochores play essential roles in coordinating mitosis, as a mechanical connector between chromosome and microtubule and as a source of numerous biochemical signals. These mechanical and biochemical behaviors of kinetochores change dynamically in cells during mitosis. Therefore, understanding kinetochore function requires an imaging tool that quantifies the protein–protein interactions or biochemical changes with high spatiotemporal resolution. FRET has previously been used in combination with biosensors to probe protein–protein interactions and biochemical activity. In this chapter, we introduce FLIM-FRET, a lifetime-based method that quantifies FRET, and describe the use of FLIM-FRET as a method for studying dynamic kinetochore behavior in cells with high spatiotemporal resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gordon DJ, Resio B, Pellman D (2012) Causes and consequences of aneuploidy in cancer. Nat Rev Genet 13:189. doi:10.1038/nrg3123

    CAS  PubMed  Google Scholar 

  2. Rajagopalan H, Lengauer C (2004) Aneuploidy and cancer. Nature 432:338–341

    Article  CAS  PubMed  Google Scholar 

  3. Bakhoum SF, Thompson SL, Manning AL (2009) Genome stability is ensured by temporal control of kinetochore–microtubule dynamics. Nat Cell Biol 11:27. doi:10.1038/ncb1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cimini D, Degrassi F (2005) Aneuploidy: a matter of bad connections. Trends Cell Biol 15:442, http://www.sciencedirect.com/science/article/pii/S0962892405001601

    Google Scholar 

  5. Nicklas RB (1983) Measurements of the force produced by the mitotic spindle in anaphase. J Cell Biol 97:542. doi:10.1083/jcb.97.2.542

    Article  CAS  PubMed  Google Scholar 

  6. Inoué S, Salmon ED (1995) Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol Biol Cell 6:1619. doi:10.1091/mbc.6.12.1619

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li R, Murray AW (1991) Feedback control of mitosis in budding yeast. Cell 66:519–531

    Article  CAS  PubMed  Google Scholar 

  8. Musacchio A, Salmon E (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8:379–393

    Article  CAS  PubMed  Google Scholar 

  9. Godek KM, Kabeche L, Compton DA (2015) Regulation of kinetochore-microtubule attachments through homeostatic control during mitosis. Nat Rev Mol Cell Biol 16:57. doi:10.1038/nrm3916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Violin JD, Zhang J, Tsien RY, Newton AC (2003) A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J Cell Biol 161:899–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen Y, Saulnier J, Yellen G, Sabatini B (2014) A PKA activity sensor for quantitative analysis of endogenous GPCR signaling via 2-photon FRET-FLIM imaging. Front Pharmacol 5:56

    Article  PubMed  PubMed Central  Google Scholar 

  12. Espenel C, Acharya BR, Kreitzer G (2013) A biosensor of local kinesin activity reveals roles of PKC and EB1 in KIF17 activation. J Cell Biol 203:445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pereira AM, Tudor C, Kanger JS, Subramaniam V, Martin-Blanco E (2011) Integrin-dependent activation of the JNK signaling pathway by mechanical stress. PLoS One 6:e26182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gavet O, Pines J (2010) Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell 18:533–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fuller B et al (2008) Midzone activation of aurora B in anaphase produces an intracellular phosphorylation gradient. Nature 453:1132–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Becker W (2012) The bh TCSPC handbook. Becker & Hickl GmbH, Berlin

    Google Scholar 

  17. Bogdanov A, Kudryavtseva E, Lukyanov K (2012) Anti-fading media for live cell GFP imaging. PLoS One 7:e53004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lleres D, Swift S, Lamond AI (2007) Detecting protein‐protein interactions in vivo with FRET using multiphoton fluorescence lifetime imaging microscopy (FLIM). Curr Protoc Cytom. doi: 10.1002/0471142956.cy1210s42

  19. Berezin M, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110:2641–2684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Festy F, Ameer-Beg S, Ng T, Suhling K (2007) Imaging proteins in vivo using fluorescence lifetime microscopy. Mol Biosyst 3:381–391

    Article  CAS  PubMed  Google Scholar 

  21. Ebrecht R, Paul C, Wouters F (2014) Fluorescence lifetime imaging microscopy in the medical sciences. Protoplasma 251:293305

    Article  Google Scholar 

  22. Goedhart J et al (2011) Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat Commun 3:751

    Article  Google Scholar 

  23. Becker & Hickl GmbH (2008) Recording the Instrument Response Function of a Multiphoton FLIM System

    Google Scholar 

  24. Lakowicz JR (2011) Principles of fluorescence spectroscopy, vol 954. Springer, New York, NY

    Google Scholar 

  25. Pelletier V, Gal N, Fournier P, Kilfoil M (2009) Microrheology of microtubule solutions and actin-microtubule composite networks. Phys Rev Lett 102:188303

    Article  PubMed  Google Scholar 

  26. Casella G, George EI (1992) Explaining the Gibbs sampler. Am Stat 46:167. doi:10.1080/00031305.1992.10475878

    Google Scholar 

  27. Geman S, Geman D (1984) Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell PAMI-6:721–741

    Article  Google Scholar 

  28. Gelman A et al (2013) Bayesian data analysis, vol 675. Chapman and Hall/CRC, Boca Raton, FL

    Google Scholar 

  29. Lawrence CE et al (1993) Detecting subtle sequence signals: a gibbs sampling strategy for multiple alignment. Science 262:208–214

    Article  CAS  PubMed  Google Scholar 

  30. Rowley M, Barber P, Coolen ACC, Vojnovic B (2011) Bayesian analysis of fluorescence lifetime imaging data. Proc SPIE 7903:790325-1

    Google Scholar 

  31. Galli R et al (2014) Intrinsic indicator of photodamage during label-free multiphoton microscopy of cells and tissues. PLoS One 9:e110295

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hopt A, Neher E (2001) Highly nonlinear photodamage in two-photon fluorescence microscopy. Biophys J 80:2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Patterson G, Piston D (2000) Photobleaching in two-photon excitation microscopy. Biophys J 78(4):2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Needleman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yoo, T.Y., Needleman, D.J. (2016). Studying Kinetochores In Vivo Using FLIM-FRET. In: Chang, P., Ohi, R. (eds) The Mitotic Spindle. Methods in Molecular Biology, vol 1413. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3542-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3542-0_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3540-6

  • Online ISBN: 978-1-4939-3542-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics