Skip to main content

DamID Analysis of Nuclear Organization in Caenorhabditis elegans

  • Protocol
  • First Online:
The Nuclear Envelope

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1411))

Abstract

The development of genomics and next generation sequencing platforms has dramatically improved our insight into chromatin structure and organization and its fine interplay with gene expression. The nuclear envelope has emerged as a key component in nuclear organization via extensive contacts between the genome and numerous proteins at the nuclear periphery. These contacts may have profound effects on gene expression as well as cell proliferation and differentiation. Indeed, their perturbations are associated with several human pathologies known as laminopathies or nuclear envelopathies. However, due to their dynamic behavior the contacts between nuclear envelope proteins and chromatin are challenging to identify, in particular in intact tissues. Here, we propose the DamID technique as an attractive method to globally characterize chromatin organization in the popular model organism Caenorhabditis elegans. DamID is based on the in vivo expression of a chromatin-associated protein of interest fused to the Escherichia coli DNA adenine methyltransferase, which produces unique identification tags at binding site in the genome. This marking is simple, highly specific and can be mapped by sensitive enzymatic and next generation sequencing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jost KL, Bertulat B, Cardoso MC (2012) Heterochromatin and gene positioning: inside, outside, any side? Chromosoma 121:555–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xu F, Zhang K, Grunstein M (2005) Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 121:375–385

    Article  CAS  PubMed  Google Scholar 

  3. Tessarz P, Kouzarides T (2014) Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol 15:703–708

    Article  CAS  PubMed  Google Scholar 

  4. Zhou HL, Luo G, Wise JA, Lou H (2014) Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Res 42:701–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD (2007) FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res 17:877–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W et al (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–951

    Article  CAS  PubMed  Google Scholar 

  7. Pickersgill H, Kalverda B, de Wit E, Talhout W, Fornerod M, van Steensel B (2006) Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet 38:1005–1014

    Article  CAS  PubMed  Google Scholar 

  8. van Steensel B, Henikoff S (2000) Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol 18:424–428

    Article  PubMed  Google Scholar 

  9. Orian A, van Steensel B, Delrow J, Bussemaker HJ, Li L, Sawado T et al (2003) Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev 17:1101–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Song S, Cooperman J, Letting DL, Blobel GA, Choi JK (2004) Identification of cyclin D3 as a direct target of E2A using DamID. Mol Cell Biol 24:8790–8802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Southall TD, Brand AH (2007) Chromatin profiling in model organisms. Brief Funct Genomic Proteomic 6:133–140

    Article  CAS  PubMed  Google Scholar 

  12. Woolcock KJ, Gaidatzis D, Punga T, Bühler M (2011) Dicer associates with chromatin to repress genome activity in Schizosaccharomyces pombe. Nat Struct Mol Biol 18(1):94–99

    Article  CAS  PubMed  Google Scholar 

  13. Braunschweig U, Hogan GJ, Pagie L, van Steensel B (2009) Histone H1 binding is inhibited by histone variant H3.3. EMBO J 28:3635–3645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kalverda B, Fornerod M (2010) Characterization of genome-nucleoporin interactions in Drosophila links chromatin insulators to the nuclear pore complex. Cell Cycle 9:4812–4817

    Article  CAS  PubMed  Google Scholar 

  15. Gonzalez-Aguilera C, Ikegami K, Ayuso C, de Luis A, Íñiguez M, Cabello J et al (2014) Genome-wide analysis links emerin to neuromuscular junction activity in Caenorhabditis elegans. Genome Biol 15:R21

    Article  PubMed  PubMed Central  Google Scholar 

  16. Steglich B, Filion GJ, van Steensel B, Ekwall K (2012) The inner nuclear membrane proteins Man1 and Ima1 link to two different types of chromatin at the nuclear periphery in S. pombe. Nucleus 3:77–87

    Article  PubMed  Google Scholar 

  17. Askjaer P, Ercan S, Meister P (2014) Modern techniques for the analysis of chromatin and nuclear organization in C. elegans. WormBook 1–35

    Google Scholar 

  18. Greil F, Moorman C, van Steensel B (2006) DamID: mapping of in vivo protein-genome interactions using tethered DNA adenine methyltransferase. Methods Enzymol 410:342–359

    Article  CAS  PubMed  Google Scholar 

  19. Greer EL, Blanco MA, Gu L, Sendinc E, Liu J, Aristizábal-Corrales D et al (2015) DNA Methylation on N6-Adenine in C. elegans. Cell 161:868–878

    Google Scholar 

  20. Sha K, Gu SG, Pantalena-Filho LC, Goh A, Fleenor J, Blanchard D et al (2010) Distributed probing of chromatin structure in vivo reveals pervasive chromatin accessibility for expressed and non-expressed genes during tissue differentiation in C. elegans. BMC Genomics 11:465

    Article  PubMed  PubMed Central  Google Scholar 

  21. Towbin BD, Gonzalez-Aguilera C, Sack R, Gaidatzis D, Kalck V, Meister P et al (2012) Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150:934–947

    Article  CAS  PubMed  Google Scholar 

  22. Sharma R, Jost D, Kind J, Gómez-Saldivar G, van Steensel B, Askjaer P et al (2014) Differential spatial and structural organization of the X chromosome underlies dosage compensation in C. elegans. Genes Dev 28:2591–2596

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dobrzynska A, Askjaer P, Gruenbaum Y (2016) Lamin binding proteins in Caenorhabditis elegans. Methods Enzymol 569:455–83

    Google Scholar 

  24. Frøkjær-Jensen C, Davis MW, Hopkins CE, Newman BJ, Thummel JM, Olesen SP et al (2008) Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet 40:1375–1383

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dai M, Thompson RC, Maher C, Contreras-Galindo R, Kaplan MH, Markovitz DM et al (2010) NGSQC: cross-platform quality analysis pipeline for deep sequencing data. BMC Genomics 11(Suppl 4):S7

    Article  PubMed  PubMed Central  Google Scholar 

  26. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17:10–12

    Google Scholar 

  27. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ivers KM, Li C, Patel N, Sredar N, Luo X, Queener H et al (2011) Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging. Invest Ophthalmol Vis Sci 52:5473–5480

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kharchenko PV, Tolstorukov MY, Park PJ (2008) Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol 26:1351–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zang C, Schones DE, Zeng C, Cui K, Zhao K, Peng W (2009) A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics 25:1952–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Song Q, Smith AD (2011) Identifying dispersed epigenomic domains from ChIP-Seq data. Bioinformatics 27:870–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rashid NU, Giresi PG, Ibrahim JG, Sun W, Lieb JD (2011) ZINBA integrates local covariates with DNA-seq data to identify broad and narrow regions of enrichment, even within amplified genomic regions. Genome Biol 12:R67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bailey T, Krajewski P, Ladunga I, Lefebvre C, Li Q, Liu T et al (2013) Practical guidelines for the comprehensive analysis of ChIP-seq data. PLoS Comput Biol 9:e1003326

    Article  PubMed  PubMed Central  Google Scholar 

  35. Urig S, Gowher H, Hermann A, Beck C, Fatemi M, Humeny A, Jeltsch A (2002) The Escherichia coli dam DNA methyltransferase modifies DNA in a highly processive reaction. J Mol Biol 319:1085–1096

    Article  CAS  PubMed  Google Scholar 

  36. Mangone M, Manoharan AP, Thierry-Mieg D, Thierry-Mieg J, Han T, Mackowiak SD et al (2010) The landscape of C. elegans 3′UTRs. Science 329:432–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge funding from the Spanish Ministry of Economy and Competitiveness (BFU2013-42709P) and the European Regional Development Fund to P.A. The Meister laboratory is funded by the Swiss National Foundation (SNF Assistant Professor grant PP00P3_133744), the Swiss Foundation for Muscle Diseases Research, and the University of Bern. G.G.-S. holds a CSIC-JAE Fellowship (JAEPre_2010_00384) and received support from EMBO (ASTF-447-2014) and EC COST Action BM1408 GENiE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Askjaer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gómez-Saldivar, G., Meister, P., Askjaer, P. (2016). DamID Analysis of Nuclear Organization in Caenorhabditis elegans . In: Shackleton, S., Collas, P., Schirmer, E. (eds) The Nuclear Envelope. Methods in Molecular Biology, vol 1411. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3530-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3530-7_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3528-4

  • Online ISBN: 978-1-4939-3530-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics