Label-Free Quantitation for Clinical Proteomics

  • Robert Moulder
  • Young Ah Goo
  • David R. GoodlettEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1410)


Label-free quantification (LFQ) has emerged as a viable option for quantitative LC-MS/MS-based proteomic analyses for use on the scale of hundreds of samples such as are encountered in clinical analysis. Notably, sample preparation, sample loading, HPLC separations, and mass spectrometric performance must be highly reproducible for this approach to be effective. The following protocols describe the key steps in the methods related to sample preparation and analysis for LC-MS/MS-based label-free quantitation using standard data-dependent acquisition.

Key words

Label-free quantification Proteomics Mass spectrometry Area under the curve (AUC) 


  1. 1.
    Ikonomou MG, Blades AT, Kebarle P (1991) Electrospray-ion spray: a comparison of mechanisms and performance. Anal Chem 63(18):1989–1998CrossRefGoogle Scholar
  2. 2.
    Abian J, Oosterkamp AJ, Gelpi E (1999) Comparison of conventional, narrow-bore and capillary liquid chromatography/mass spectrometry for electrospray ionization mass spectrometry: practical considerations. J Mass Spectrometry 34(4):244–254CrossRefGoogle Scholar
  3. 3.
    Foss EJ, Radulovic D, Shaffer SA et al (2007) Genetic basis of proteome variation in yeast. Nat Genet 39(11):1369–1375CrossRefPubMedGoogle Scholar
  4. 4.
    Nahnsen S, Bielow C, Reinert K et al (2013) Tools for label-free peptide quantification. Mol Cell Proteomics 12(3):549–556PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Kalli A, Smith GT, Sweredoski MJ et al (2013) Evaluation and optimization of mass spectrometric settings during data-dependent acquisition mode: focus on LTQ-Orbitrap mass analyzers. J Proteome Res 12(7):3071–3086PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Moulder R, Bhosale SD, Erkkila T et al (2015) Serum proteomes distinguish children developing type 1 diabetes in a cohort with HLA-conferred susceptibility. Diabetes 64(6):2265–2278CrossRefPubMedGoogle Scholar
  7. 7.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372CrossRefPubMedGoogle Scholar
  8. 8.
    Cox J, Neuhauser N, Michalski A et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805CrossRefPubMedGoogle Scholar
  9. 9.
    Tyanova S, Temu T, Carlson A et al (2015) Visualization of LC-MS/MS proteomics data in MaxQuant. Proteomics 15(8):1453–1456CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Robert Moulder
    • 1
  • Young Ah Goo
    • 2
  • David R. Goodlett
    • 2
    Email author
  1. 1.Centre for BiotechnologyUniversity of TurkuTurkuFinland
  2. 2.Mass Spectrometry CenterUniversity of Maryland—BaltimoreBaltimoreUSA

Personalised recommendations