Advertisement

Determining the Composition and Stability of Protein Complexes Using an Integrated Label-Free and Stable Isotope Labeling Strategy

  • Todd M. Greco
  • Amanda J. Guise
  • Ileana M. CristeaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1410)

Abstract

In biological systems, proteins catalyze the fundamental reactions that underlie all cellular functions, including metabolic processes and cell survival and death pathways. These biochemical reactions are rarely accomplished alone. Rather, they involve a concerted effect from many proteins that may operate in a directed signaling pathway and/or may physically associate in a complex to achieve a specific enzymatic activity. Therefore, defining the composition and regulation of protein complexes is critical for understanding cellular functions. In this chapter, we describe an approach that uses quantitative mass spectrometry (MS) to assess the specificity and the relative stability of protein interactions. Isolation of protein complexes from mammalian cells is performed by rapid immunoaffinity purification, and followed by in-solution digestion and high-resolution mass spectrometry analysis. We employ complementary quantitative MS workflows to assess the specificity of protein interactions using label-free MS and statistical analysis, and the relative stability of the interactions using a metabolic labeling technique. For each candidate protein interaction, scores from the two workflows can be correlated to minimize nonspecific background and profile protein complex composition and relative stability.

Key words

Affinity isolation Immunoprecipitation Protein complexes Protein interactions Stable isotope labeling quantification Label-free quantification SAINT I-DIRT 

Notes

Acknowledgements

We are grateful for funding from NIH grants R01GM114141, R21AI102187, and R21 HD073044, an NJCCR postdoctoral fellowship to TMG, and a NSF graduate research fellowship to AJG.

References

  1. 1.
    Rigaut G et al (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17(10):1030–1032CrossRefPubMedGoogle Scholar
  2. 2.
    Cristea IM et al (2005) Fluorescent proteins as proteomic probes. Mol Cell Proteomics 4(12):1933–1941CrossRefPubMedGoogle Scholar
  3. 3.
    Sueda S, Tanaka H, Yamagishi M (2009) A biotin-based protein tagging system. Anal Biochem 393(2):189–195CrossRefPubMedGoogle Scholar
  4. 4.
    Lambert JP et al (2015) Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes. J Proteomics 118:81–94CrossRefPubMedGoogle Scholar
  5. 5.
    Kaltenbrun E et al (2013) A Gro/TLE-NuRD corepressor complex facilitates Tbx20-dependent transcriptional repression. J Proteome Res 12(12):5395–5409PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Greco TM et al (2011) Nuclear import of histone deacetylase 5 by requisite nuclear localization signal phosphorylation. Mol Cell Proteomics 10(2):M110.004317PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Domanski M et al (2012) Improved methodology for the affinity isolation of human protein complexes expressed at near endogenous levels. Biotechniques 0(0):1–6PubMedCentralPubMedGoogle Scholar
  8. 8.
    Joshi P et al (2013) The functional interactome landscape of the human histone deacetylase family. Mol Syst Biol 9:672PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Pflieger D et al (2008) Quantitative proteomic analysis of protein complexes: concurrent identification of interactors and their state of phosphorylation. Mol Cell Proteomics 7(2):326–346CrossRefPubMedGoogle Scholar
  10. 10.
    Hubner NC et al (2010) Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J Cell Biol 189(4):739–754PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Blagoev B et al (2003) A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat Biotechnol 21(3):315–318CrossRefPubMedGoogle Scholar
  12. 12.
    Mathias RA et al (2014) Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 159(7):1615–1625PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Miteva YV, Budayeva HG, Cristea IM (2013) Proteomics-based methods for discovery, quantification, and validation of protein-protein interactions. Anal Chem 85(2):749–768PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Nesvizhskii AI (2012) Computational and informatics strategies for identification of specific protein interaction partners in affinity purification mass spectrometry experiments. Proteomics 12(10):1639–1655PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Cristea IM et al (2006) Tracking and elucidating alphavirus-host protein interactions. J Biol Chem 281(40):30269–30278CrossRefPubMedGoogle Scholar
  16. 16.
    Collins BC et al (2013) Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system. Nat Methods 10(12):1246–1253CrossRefPubMedGoogle Scholar
  17. 17.
    Guise AJ et al (2012) Aurora B-dependent regulation of class IIa histone deacetylases by mitotic nuclear localization signal phosphorylation. Mol Cell Proteomics 11(11):1220–1229PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Oda Y et al (1999) Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci U S A 96(12):6591–6596PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Ong SE, Kratchmarova I, Mann M (2003) Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res 2(2):173–181CrossRefPubMedGoogle Scholar
  20. 20.
    Ranish JA et al (2003) The study of macromolecular complexes by quantitative proteomics. Nat Genet 33(3):349–355CrossRefPubMedGoogle Scholar
  21. 21.
    Sardiu ME et al (2008) Probabilistic assembly of human protein interaction networks from label-free quantitative proteomics. Proc Natl Acad Sci U S A 105(5):1454–1459PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Tate S et al (2013) Label-free quantitative proteomics trends for protein-protein interactions. J Proteomics 81:91–101CrossRefPubMedGoogle Scholar
  23. 23.
    Choi H et al (2011) SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat Methods 8(1):70–73PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Mellacheruvu D et al (2013) The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat Methods 10(8):730–736PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Choi H et al (2012) Analyzing protein-protein interactions from affinity purification-mass spectrometry data with SAINT. Curr Protoc Bioinformatics. Chapter 8, Unit8.15Google Scholar
  26. 26.
    Diner BA et al (2015) The functional interactome of PYHIN immune regulators reveals IFIX is a sensor of viral DNA. Mol Syst Biol 11(2):787PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Tackett AJ et al (2005) I-DIRT, a general method for distinguishing between specific and nonspecific protein interactions. J Proteome Res 4(5):1752–1756CrossRefPubMedGoogle Scholar
  28. 28.
    Byrum SD et al (2012) ChAP-MS: a method for identification of proteins and histone posttranslational modifications at a single genomic locus. Cell Rep 2(1):198–205PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Bottermann K et al (2013) Systematic analysis reveals elongation factor 2 and alpha-enolase as novel interaction partners of AKT2. PLoS One 8(6), e66045PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Di Virgilio M et al (2013) Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching. Science 339(6120):711–715CrossRefPubMedGoogle Scholar
  31. 31.
    Ramanagoudr-Bhojappa R et al (2013) Physical and functional interaction between yeast Pif1 helicase and Rim1 single-stranded DNA binding protein. Nucleic Acids Res 41(2):1029–1046PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Tsai YC et al (2012) Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription. Mol Cell Proteomics 11(5):60–76PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Moorman NJ et al (2010) A targeted spatial-temporal proteomics approach implicates multiple cellular trafficking pathways in human cytomegalovirus virion maturation. Mol Cell Proteomics 9(5):851–860PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Goldberg AD et al (2010) Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140(5):678–691PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Carabetta VJ, Silhavy TJ, Cristea IM (2010) The response regulator SprE (RssB) is required for maintaining poly(A) polymerase I-degradosome association during stationary phase. J Bacteriol 192(14):3713–3721PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Niepel M et al (2013) The nuclear basket proteins Mlp1p and Mlp2p are part of a dynamic interactome including Esc1p and the proteasome. Mol Biol Cell 24(24):3920–3938PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Mann JM et al (2013) Complex formation and processing of the minor transformation pilins of Bacillus subtilis. Mol Microbiol 90(6):1201–1215CrossRefPubMedGoogle Scholar
  38. 38.
    Castellana M et al (2014) Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat Biotechnol 32(10):1011–1018PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Miteva YV, Cristea IM (2014) A proteomic perspective of Sirtuin 6 (SIRT6) phosphorylation and interactions and their dependence on its catalytic activity. Mol Cell Proteomics 13(1):168–183PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Conlon FL et al (2012) Immunoisolation of protein complexes from Xenopus. Methods Mol Biol 917:369–390PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Manza LL et al (2005) Sample preparation and digestion for proteomic analyses using spin filters. Proteomics 5(7):1742–1745CrossRefPubMedGoogle Scholar
  42. 42.
    Wisniewski JR et al (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362CrossRefPubMedGoogle Scholar
  43. 43.
    Erde J, Loo RR, Loo JA (2014) Enhanced FASP (eFASP) to increase proteome coverage and sample recovery for quantitative proteomic experiments. J Proteome Res 13(4):1885–1895PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Chen EI et al (2007) Optimization of mass spectrometry-compatible surfactants for shotgun proteomics. J Proteome Res 6(7):2529–2538PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Chatr-Aryamontri A et al (2015) The BioGRID interaction database: 2015 update. Nucleic Acids Res 43(database issue):D470–D478PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Todd M. Greco
    • 1
  • Amanda J. Guise
    • 1
  • Ileana M. Cristea
    • 1
    Email author
  1. 1.Department of Molecular BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations