Multiple and Selective Reaction Monitoring Using Triple Quadrupole Mass Spectrometer: Preclinical Large Cohort Analysis

  • Qin Fu
  • Zhaohui Chen
  • Shenyan Zhang
  • Sarah J. Parker
  • Zongming Fu
  • Adrienne Tin
  • Xiaoqian Liu
  • Jennifer E. Van Eyk
Part of the Methods in Molecular Biology book series (MIMB, volume 1410)


Multiple reaction monitoring (MRM), sometimes referred to as selective reaction monitoring (SRM), is a mass spectrometry method that can target selective peptides for the detection and quantitation of a protein. Compared to traditional ELISA, MRM assays have a number of advantages including ease in multiplexing several proteins in the same assay and independence from the necessity for high-quality, expensive, and at times unreliable antibodies. Furthermore, MRM assays can be developed to quantify multiple proteoforms of a single protein allowing the quantification of allelic expression of a particular sequence polymorphism, protein isoform, as well as determining site occupancy of posttranslational modification(s). In this chapter, we describe our workflow for target peptide selection, assay optimization, and acquisition multiplexing. Our workflow is presented using the example of constrained MRM assays developed for the serum protein ApoL1 in its various proteoforms to highlight the specific technical considerations necessary for the difficult task of quantifying peptide targets based on highly specific amino acid sequences by MRM.

Key words

Quantification Multiple reaction monitoring Selective reaction monitoring Mass spectrometry APO L1 



This work was supported by NHLBI Johns Hopkins Proteomic Innovation Center in Heart Failure—HHSN268201000032C (JVE)—and partially supported by the Chronic Kidney Disease Biomarker Consortium funded by NIDDK U01-U01DK085689. Special thanks to Drs. Josef Coresh, Lesley Inker, Chi-yuan Hsu, John Eckfeldt, Paul Kimmel, Dr. Vasan Ramachandran, and Harold I. Feldman.


  1. 1.
    Addona TA, Abbatiello SE, Schilling B et al (2009) Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat Biotechnol 27(7):633–641. doi: 10.1038/nbt.1546 PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Hoofnagle AN, Roth MY (2013) Clinical review: improving the measurement of serum thyroglobulin with mass spectrometry. J Clin Endocrinol Metab 98(4):1343–1352PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Bystrom CE, Salameh W, Reitz R et al (2010) Plasma renin activity by LC-MS/MS: development of a prototypical clinical assay reveals a subpopulation of human plasma samples with substantial peptidase activity. Clin Chem 56(10):1561–1569CrossRefPubMedGoogle Scholar
  4. 4.
    Chen Z, Caulfield MP, McPhaul MJ et al (2013) Quantitative insulin analysis using liquid chromatography-tandem mass spectrometry in a high-throughput clinical laboratory. Clin Chem 59(9):1349–1356CrossRefPubMedGoogle Scholar
  5. 5.
    Liu X, Jin Z, O’Brien R et al (2013) Constrained selected reaction monitoring: quantification of selected post-translational modifications and protein isoforms. Methods 61(3):304–312PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Yuan M, Breitkopf SB, Yang X et al (2012) A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protoc 7(5):872–881PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Anderson L, Hunter CL (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 5(4):573–588CrossRefPubMedGoogle Scholar
  8. 8.
    Liebler DC, Zimmerman LJ (2013) Targeted quantitation of proteins by mass spectrometry. Biochemistry 52(22):3797–3806. doi: 10.1021/bi400110b PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Gallien S, Domon B (2015) Detection and quantification of proteins in clinical samples using high resolution mass spectrometry. Methods. doi: 10.1016/j.ymeth.2015.03.015 PubMedGoogle Scholar
  10. 10.
    Zhang P, Kirk JA, Ji W et al (2012) Multiple reaction monitoring to identify site-specific troponin I phosphorylated residues in the failing human heart. Circulation 126(15):1828–1837PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Jin Z, Fu Z, Yang J et al (2013) Identification and characterization of citrulline-modified brain proteins by combining HCD and CID fragmentation. Proteomics 13(17):2682–2691CrossRefPubMedGoogle Scholar
  12. 12.
    Grote E, Fu Q, Ji W et al (2013) Using pure protein to build a multiple reaction monitoring mass spectrometry assay for targeted detection and quantitation. Methods Mol Biol 1005:199–213CrossRefPubMedGoogle Scholar
  13. 13.
    MacLean B, Tomazela DM, Shulman N et al (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26(7):966–968. doi: 10.1093/bioinformatics/btq054 PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Zhou H, Hoek M, Yi P et al (2013) Rapid detection and quantification of apolipoprotein L1 genetic variants and total levels in plasma by ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 27(23):2639–2647CrossRefPubMedGoogle Scholar
  15. 15.
    Fu Q, Schoenhoff FS, Savage WJ et al (2010) Multiplex assays for biomarker research and clinical application: translational science coming of age. Proteomics Clin Appl 4(3):271–284CrossRefPubMedGoogle Scholar
  16. 16.
    Jones KA, Kim PD, Patel BB et al (2013) Immunodepletion plasma proteomics by tripleTOF 5600 and Orbitrap elite/LTQ-Orbitrap Velos/Q exactive mass spectrometers. J Proteome Res 12(10):4351–4365CrossRefPubMedGoogle Scholar
  17. 17.
    Toprak UH, Gillet LC, Maiolica A et al (2014) Conserved peptide fragmentation as a benchmarking tool for mass spectrometers and a discriminating feature for targeted proteomics. Mol Cell Proteomics 13(8):2056–2071PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Fu Q, Zhu J, Van Eyk JE (2010) Comparison of multiplex immunoassay platforms. Clin Chem 56(2):314–318PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Fu Z, Yan K, Rosenberg A et al (2013) Improved protein extraction and protein identification from archival formalin-fixed paraffin-embedded human aortas. Proteomics Clin Appl 7(3–4):217–224PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Nirmalan NJ, Harnden P, Selby PJ et al (2009) Development and validation of a novel protein extraction methodology for quantitation of protein expression in formalin-fixed paraffin-embedded tissues using western blotting. J Pathol 217(4):497–506CrossRefPubMedGoogle Scholar
  21. 21.
    Nirmalan NJ, Hughes C, Peng J et al (2011) Initial development and validation of a novel extraction method for quantitative mining of the formalin-fixed, paraffin-embedded tissue proteome for biomarker investigations. J Proteome Res 10(2):896–906PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Qin Fu
    • 1
  • Zhaohui Chen
    • 1
  • Shenyan Zhang
    • 1
  • Sarah J. Parker
    • 1
  • Zongming Fu
    • 2
  • Adrienne Tin
    • 3
  • Xiaoqian Liu
    • 1
  • Jennifer E. Van Eyk
    • 1
  1. 1.Advanced Clinical Biosystems Research Institute, The Heart InstituteCedars-Sinai Medical CenterLos AngelesUSA
  2. 2.Department of MedicineJohns Hopkins UniversityBaltimoreUSA
  3. 3.Department of EpidemiologyJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations