In Vivo Bioluminescence Imaging of Intratumoral Bacteria

  • Michelle Cronin
  • Ali R. Akin
  • Kevin P. Francis
  • Mark TangneyEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1409)


This chapter describes the use of whole-body bioluminescent imaging (BLI) for the study of bacterial trafficking in live mice, with an emphasis on the use of bacteria in therapy of cancer. Bacteria present an attractive class of vector for cancer therapy, possessing a natural ability to grow preferentially within tumors following systemic administration. Bacteria engineered to express the lux gene cassette permit BLI detection of the bacteria and tumor sites concurrently. The location and levels of bacteria within tumors over time can be readily examined, visualized in two or three dimensions. The method is applicable to a wide range of bacterial species and tumor xenograft types. This article describes the protocol for analysis of bioluminescent bacteria within subcutaneous tumor-bearing mice. This powerful, and inexpensive, real-time imaging strategy represents an ideal method for the study of bacteria in vivo in the context of cancer research. This protocol outlines the procedure for studying lux-tagged Escherichia coli and Bifidobacterium breve in mice, demonstrating the spatial and temporal readout from 2D and 3D BLI achievable with whole-body in vivo luminescence imaging.

Key words

Escherichia coli Bifidobacterium breve Bacterial therapy Gene therapy Cancer Vector Lux Optical imaging Luciferase 



The authors wish to acknowledge Dr. Cormac Gahan and Dr. Susan Joyce for providing lux-tagged E. coli MG1655 and relevant funding support from the European Commission Seventh Framework Programme (PIAP- GA-2013-612219-VIP), Science Foundation Ireland/Enterprise Ireland (12/TIDA/B2437), the Irish Health Research Board (HRA_POR/2010/138), and the Irish Cancer Society (CRF11CRO and PCI12TAN).


  1. 1.
    Tangney M, Francis KP (2012) In vivo optical imaging in gene & cell therapy. Curr Gene Ther 12:2–11CrossRefPubMedGoogle Scholar
  2. 2.
    Tangney M, Ahmad S, Collins SA, O’Sullivan GC (2010) Gene therapy for prostate cancer. Postgrad Med 122:166–180CrossRefPubMedGoogle Scholar
  3. 3.
    Morrissey D, O’Sullivan GC, Tangney M (2010) Tumor targeting with systemically administered bacteria. Curr Gene Ther 10:3–14CrossRefPubMedGoogle Scholar
  4. 4.
    Collins SA, Guinn BA, Harrison PT, Scallan MF, O’Sullivan GC, Tangney M (2008) Viral vectors in cancer immunotherapy: which vector for which strategy? Curr Gene Ther 8:66–78CrossRefPubMedGoogle Scholar
  5. 5.
    Baban CK, Cronin M, O’Hanlon D, O’Sullivan GC, Tangney M (2010) Bacteria as vectors for gene therapy of cancer. Bioeng Bugs 1:385–394PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Yu YA, Zhang Q, Szalay AA (2008) Establishment and characterization of conditions required for tumor colonization by intravenously delivered bacteria. Biotechnol Bioeng 100:567–578CrossRefPubMedGoogle Scholar
  7. 7.
    Cronin M, Morrissey D, Rajendran S, El Mashad SM, van Sinderen D, O’Sullivan GC et al (2010) Orally administered bifidobacteria as vehicles for delivery of agents to systemic tumors. Mol Ther 18:1397–1407PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    van Pijkeren JP, Morrissey D, Monk IR, Cronin M, Rajendran S, O’Sullivan GC et al (2010) A novel Listeria monocytogenes-based DNA delivery system for cancer gene therapy. Hum Gene Ther 21:405–416CrossRefPubMedGoogle Scholar
  9. 9.
    Cronin M, Akin AR, Collins SA, Meganck J, Kim JB, Baban CK et al (2012) High resolution in vivo bioluminescent imaging for the study of bacterial tumor targeting. PLoS One 7:e30940PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Ahmad S, Casey G, Cronin M, Rajendran S, Sweeney P, Tangney M et al (2011) Induction of effective antitumor response after mucosal bacterial vector mediated DNA vaccination with endogenous prostate cancer specific antigen. J Urol 186:687–693CrossRefPubMedGoogle Scholar
  11. 11.
    Riedel CU, Monk IR, Casey PG, Morrissey D, O’Sullivan GC, Tangney M et al (2007) Improved luciferase tagging system for Listeria monocytogenes allows real-time monitoring in vivo and in vitro. Appl Environ Microbiol 73:3091–3094PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Baban CK, Cronin M, Akin AR, O’Brien A, Gao X, Tabirca S et al (2012) Bioluminescent bacterial imaging in vivo. J Vis Exp 4:e4318Google Scholar
  13. 13.
    Cheng CM, Lu YL, Chuang KH, Hung WC, Shiea J, Su YC et al (2008) Tumor-targeting prodrug-activating bacteria for cancer therapy. Cancer Gene Ther 15:393–401CrossRefPubMedGoogle Scholar
  14. 14.
    Cronin M, Sleator RD, Hill C, Fitzgerald GF, van Sinderen D (2008) Development of a luciferase-based reporter system to monitor Bifidobacterium breve UCC2003 persistence in mice. BMC Microbiol 8:161PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Kuo C, Coquoz O, Troy TL, Xu H, Rice BW (2007) Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging. J Biomed Opt 12:024007CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Michelle Cronin
    • 1
  • Ali R. Akin
    • 2
  • Kevin P. Francis
    • 2
  • Mark Tangney
    • 1
    Email author
  1. 1.Cork Cancer Research CentreUniversity College CorkCorkIreland
  2. 2.Preclinical ImagingPerkinElmerAlamedaUSA

Personalised recommendations