Skip to main content

Enhancement of Tumor-Targeted Delivery of Bacteria with Nitroglycerin Involving Augmentation of the EPR Effect

  • Protocol
  • First Online:
Bacterial Therapy of Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1409))

Abstract

The use of bacteria, about 1 μm in size, is now becoming an attractive strategy for cancer treatment. Solid tumors exhibit the enhanced permeability and retention (EPR) effect for biocompatible macromolecules such as polymer-conjugated anticancer agents, liposomes, and micelles. This phenomenon permits tumor-selective delivery of such macromolecules. We report here that bacteria injected intravenously evidenced a property similar to that can of these macromolecules. Bacteria that can accumulate selectively in tumors may therefore be used in cancer treatment.

Facultative or anaerobic bacteria will grow even under the hypoxic conditions present in solid tumors. We found earlier that nitric oxide (NO) was among the most important factors that facilitated the EPR effect via vasodilatation, opening of endothelial cell junction gaps, and increasing the blood flow of hypovascular tumors. Here, we describe the augmentation of the EPR effect by means of nitroglycerin (NG), a commonly used NO donor, using various macromolecular agents in different tumor models. More importantly, we report that NG significantly enhanced the delivery of Lactobacillus casei to tumors after intravenous injection of the bacteria, more than a tenfold increase in bacterial accumulation in tumors after NG treatment. This finding suggests that NG has a potential advantage to enhance bacterial therapy of cancer, and further investigations of this possibility are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  2. Lammers T (2012) Drug delivery research in Europe. J Control Release 161:151

    Article  CAS  PubMed  Google Scholar 

  3. Seki T, Fang J, Maeda H (2009) Tumor targeted macromolecular drug delivery based on the enhanced permeability and retention effect in solid tumor. In: Lu Y, Mahato RI (eds) Pharmaceutical perspectives of cancer therapeutics. AAPS-Springer, New York, pp 93–102

    Chapter  Google Scholar 

  4. Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 74:47–61

    Article  CAS  PubMed  Google Scholar 

  5. Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151

    Article  CAS  PubMed  Google Scholar 

  6. Kimura NT, Taniguchi S, Aoki K et al (1980) Selective localization and growth of Bifidobacterium bifidum in mouse tumors following intravenous administration. Cancer Res 40:2061–2068

    CAS  PubMed  Google Scholar 

  7. Hoffman RM (2009) Tumor-targeting amino acid auxotrophic Salmonella typhimurium. Amino Acids 37:509–521

    Article  CAS  PubMed  Google Scholar 

  8. Coley WB (1906) Late results of the treatment of inoperable sarcoma by the mixed toxins of erysipelas and Bacillus prodigiosus. Am J Med Sci 131:375–430

    Google Scholar 

  9. Malmgren RA, Flanigan CC (1955) Localization of the vegetative form of Clostridium tetani in mouse tumors following intravenous spore administration. Cancer Res 15:473–478

    CAS  PubMed  Google Scholar 

  10. Möse JR, Möse G (1964) Oncolysis by clostridia. I. Activity of Clostridium butyricum (M-55) and other nonpathogenic clostridia against the Ehrlich carcinoma. Cancer Res 24:212–216

    Google Scholar 

  11. Kohwi Y, Imai K, Tamura Z et al (1978) Antitumor effect of Bifidobacterium infantis in mice. Gan 69:613–618

    CAS  PubMed  Google Scholar 

  12. Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58:1408–1416

    CAS  PubMed  Google Scholar 

  13. Fox ME, Lemmon MJ, Mauchline ML et al (1996) Anaerobic bacteria as a delivery system for cancer gene therapy: in vitro activation of 5-fluorocytosine by genetically engineered clostridia. Gene Ther 3:173–178

    CAS  PubMed  Google Scholar 

  14. Sznol M, Lin SL, Bermudes D et al (2000) Use of preferentially replicating bacteria for the treatment of cancer. J Clin Invest 105:1027–1030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Low KB, Ittensohn M, Le T et al (1999) Lipid A mutant Salmonella with suppressed virulence and TNFα induction retain tumor-targeting in vivo. Nat Biotechnol 17:37–41

    CAS  PubMed  Google Scholar 

  16. Clairmont C, Lee KC, Pike J et al (2000) Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimurium. J Infect Dis 181:1996–2002

    Article  CAS  PubMed  Google Scholar 

  17. Yazawa K, Fujimori M, Amano J et al (2000) Bifidobacterium longum as a delivery system for cancer gene therapy: selective localization and growth in hypoxic tumors. Cancer Gene Ther 7:269–274

    Article  CAS  PubMed  Google Scholar 

  18. Zhao M, Yang M, Li XM et al (2005) Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci U S A 102:755–760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Xiang S, Fruehauf J, Li CJ (2006) Short hairpin RNA–expressing bacteria elicit RNA interference in mammals. Nat Biotechnol 24:697–702

    Article  CAS  PubMed  Google Scholar 

  20. Sasaki T, Fujimori M, Hamaji Y et al (2006) Genetically engineered Bifidobacterium longum for tumor-targeting enzyme-prodrug therapy of autochthonous mammary tumors in rats. Cancer Sci 97:649–657

    Article  CAS  PubMed  Google Scholar 

  21. Nanno M, Kato I, Kobayashi T et al (2011) Biological effects of probiotics: what impact does Lactobacillus casei Shirota have on us? Int J Immunopathol Pharmacol 24:45S–50S

    CAS  PubMed  Google Scholar 

  22. Matsuzaki T (1998) Immunomodulation by treatment with Lactobacillus casei strain Shirota. Int J Food Microbiol 41:133–140

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki F, Okabe H, Todaka T et al (1988) Heat-killed Lactobacillus casei, LC-9018, as an interferon inducer. Nihon Saikingaku Zasshi 43:821–827

    Article  CAS  PubMed  Google Scholar 

  24. Maeda H, Noguchi Y, Sato K et al (1994) Enhanced vascular permeability in solid tumor is mediated by nitric oxide and inhibited by both new nitric oxide scavenger and nitric oxide synthase inhibitor. Jpn J Cancer Res 85:331–334

    Article  CAS  PubMed  Google Scholar 

  25. Wu J, Akaike T, Maeda H (1998) Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and nitric oxide scavenger. Cancer Res 58:159–165

    CAS  PubMed  Google Scholar 

  26. Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79

    Article  CAS  PubMed  Google Scholar 

  27. Fukuto JM, Cho JY, Switzer CH (2000) The chemical properties of nitric oxide and related nitrogen oxides. In: Ignarro LJ (ed) Nitric oxide: biology and pathobiology. Academic, San Diego, CA, pp 23–39

    Chapter  Google Scholar 

  28. Feelisch M, Noack EA (1987) Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase. Eur J Pharmacol 139:19–30

    Article  CAS  PubMed  Google Scholar 

  29. Chen Z, Stamler JS (2006) Bioactivation of nitroglycerin by the mitochondrial aldehyde dehydrogenase. Trends Cardiovasc Med 16:259–265

    Article  CAS  PubMed  Google Scholar 

  30. Seki T, Fang J, Maeda H (2009) Enhanced delivery of macromolecular antitumor drugs to tumors by nitroglycerin application. Cancer Sci 100:2426–2430

    Article  CAS  PubMed  Google Scholar 

  31. Maeda H (2010) Nitroglycerin enhances vascular blood flow and drug delivery in hypoxic tumor tissues: analogy between angina pectoris and solid tumors and enhancement of the EPR effect. J Control Release 142:296–298

    Article  CAS  PubMed  Google Scholar 

  32. Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63:131–135

    Article  CAS  PubMed  Google Scholar 

  33. Vicent MJ, Ringsdorf H, Duncan R (2009) Polymer therapeutics: clinical applications and challenges for development. Adv Drug Deliv Rev 61:1117–1120

    Article  CAS  PubMed  Google Scholar 

  34. Matsumura Y, Kataoka K (2009) Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci 100:572–579

    Article  CAS  PubMed  Google Scholar 

  35. Noguchi Y, Wu J, Duncan R et al (1998) Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues. Jpn J Cancer Res 89:307–314

    Article  CAS  PubMed  Google Scholar 

  36. Kato I, Kobayashi S, Yokokura T et al (1981) Antitumor activity of Lactobacillus casei in mice. Gan 72:517–523

    CAS  PubMed  Google Scholar 

  37. Kato I, Yokokura T, Mutai M (1985) Induction of tumoricidal peritoneal exudate cells by administration of Lactobacillus casei. Int J Immunopharmacol 7:103–109

    Article  CAS  PubMed  Google Scholar 

  38. Kato I, Yokokura T, Mutai M (1983) Macrophage activation by Lactobacillus casei in mice. Microbiol Immunol 27:611–618

    Article  CAS  PubMed  Google Scholar 

  39. Kato I, Yokokura T, Mutai M (1984) Augmentation of mouse natural killer cell activity by Lactobacillus casei and its surface antigens. Microbiol Immunol 28:209–217

    Article  CAS  PubMed  Google Scholar 

  40. Ignarro LJ (2000) Nitric oxide: biology and pathobiology. Academic, San Diego, CA

    Google Scholar 

  41. Jordan BF, Misson PD, Demeure R et al (2000) Changes in tumor oxygenation/perfusion induced by the NO donor, isosorbide dinitrate, in comparison with carbogen: monitoring by EPR and MRI. Int J Radiat Oncol Biol Phys 48:565–570

    Article  CAS  PubMed  Google Scholar 

  42. Mitchell JB, Wink DA, DeGraff W et al (1993) Hypoxic mammalian cell radiosensitization by nitric oxide. Cancer Res 53:5845–5848

    CAS  PubMed  Google Scholar 

  43. Yasuda H, Nakayama K, Watanabe M et al (2006) Nitroglycerin treatment may enhance chemosensitivity to docetaxel and carboplatin in patients with lung adenocarcinoma. Clin Cancer Res 12:6748–6757

    Article  CAS  PubMed  Google Scholar 

  44. Nagamitsu A, Greish K, Maeda H (2009) Elevating blood pressure as a strategy to increase tumor-targeted delivery of macromolecular drug SMANCS: cases of advanced solid tumors. Jpn J Clin Oncol 39:756–766

    Article  PubMed  Google Scholar 

  45. Tanaka S, Akaike T, Wu J et al (2003) Modulation of tumor-selective vascular blood flow and extravasation by the stable prostaglandin 12 analogue beraprost sodium. J Drug Target 11(1):45–52

    Article  CAS  PubMed  Google Scholar 

  46. Fang J, Qin H, Nakamura H et al (2012) Carbon monoxide, generated by heme oxygenase-1, mediates the enhanced permeability and retention effect in solid tumors. Cancer Sci 103:535–541

    Article  CAS  PubMed  Google Scholar 

  47. Aso Y, Akaza H, Kotake T et al (1995) Preventive effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer in a double-blind trial. The BLP Study Group. Eur Urol 27:104–109

    CAS  PubMed  Google Scholar 

  48. Ohashi Y, Nakai S, Tsukamoto T et al (2002) Habitual intake of lactic acid bacteria and risk reduction of bladder cancer. Urol Int 68:273–280

    Article  CAS  PubMed  Google Scholar 

  49. Sylvester RJ, van der Meijden AP, Lamm DL (2002) Intravesical bacillus Calmette-Guerin reduces the risk of progression in patients with superficial bladder cancer: a meta-analysis of the published results of randomized clinical trials. J Urol 168:1964–1970

    Article  CAS  PubMed  Google Scholar 

  50. Fang J, Liao L, Yin H, Nakamura H, Shin T, Maeda H (2014) Enhanced bacterial tumor delivery by modulating the EPR effect and therapeutic potential of Lactobacillus casei. J Pharm Sci 103:3235–3243

    Google Scholar 

  51. Sahoo SK, Sawa T, Fang J et al (2002) Pegylated zinc protoporphyrin: a water-soluble heme oxygenase inhibitor with tumor-targeting capacity. Bioconjug Chem 13:1031–1038

    Article  CAS  PubMed  Google Scholar 

  52. Fang J, Sawa T, Akaike T et al (2003) In vivo antitumor activity of pegylated zinc protoporphyrin: targeted inhibition of heme oxygenase in solid tumor. Cancer Res 63:3567–3574

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported in part by a Grant-in-Aid from the Ministry of Education, Science, Culture, Sports and Technology of Japan (No. 08011717), a Cancer Speciality grant from the Ministry of Health, Welfare and Labour (H23-Third Term Comprehensive Control Research, General-001), and research funds of the Faculty of Pharmaceutical Sciences at Sojo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Maeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fang, J., Long, L., Maeda, H. (2016). Enhancement of Tumor-Targeted Delivery of Bacteria with Nitroglycerin Involving Augmentation of the EPR Effect. In: Hoffman, R. (eds) Bacterial Therapy of Cancer. Methods in Molecular Biology, vol 1409. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3515-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3515-4_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3513-0

  • Online ISBN: 978-1-4939-3515-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics