Skip to main content

Methods for Tumor Targeting with Salmonella typhimurium A1-R

Part of the Methods in Molecular Biology book series (MIMB,volume 1409)

Abstract

Salmonella typhimurium A1-R (S. typhimurium A1-R) has shown great preclinical promise as a broad-based anti-cancer therapeutic (please see Chapter 1). The present chapter describes materials and methods for the preclinical study of S. typhimurium A1-R in clinically-relevant mouse models. Establishment of orthotopic metastatic mouse models of the major cancer types is described, as well as other useful models, for efficacy studies of S. typhimurium A1-R or other tumor-targeting bacteria, as well. Imaging methods are described to visualize GFP-labeled S. typhimurium A1-R, as well as GFP- and/or RFP-labeled cancer cells in vitro and in vivo, which S. typhimurium A1-R targets. The mouse models include metastasis to major organs that are life-threatening to cancer patients including the liver, lung, bone, and brain and how to target these metastases with S. typhimurium A1-R. Various routes of administration of S. typhimurium A1-R are described with the advantages and disadvantages of each. Basic experiments to determine toxic effects of S. typhimurium A1-R are also described. Also described are methodologies for combining S. typhimurium A1-R and chemotherapy. The testing of S. typhimurium A1-R on patient tumors in patient-derived orthotopic xenograft (PDOX) mouse models is also described. The major methodologies described in this chapter should be translatable for clinical studies.

Key words

  • Salmonella typhimurium A1-R
  • Tumor targeting
  • Leu-Arg
  • Amino acid
  • Auxotroph
  • Green fluorescent protein (GFP)
  • Surgical orthotopic implantation (SOI)
  • Nude mice
  • Mouse models
  • Cancer
  • Metastasis
  • Orthotopic

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-3515-4_13
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-3515-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hoffman RM, Zhao M (2014) Methods for the development of tumor-targeting bacteria. Expert Opin Drug Discov 9:741–750

    CrossRef  PubMed  Google Scholar 

  2. Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ, Sherry RM et al (2002) Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol 20:142–152

    PubMed Central  CrossRef  PubMed  Google Scholar 

  3. Zhao M, Yang M, Ma H, Li X, Tan X, Li S et al (2006) Targeted therapy with a Salmonella typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res 66:7647–7652

    CrossRef  CAS  PubMed  Google Scholar 

  4. Zhang Y, Zhang N, Zhao M, Hoffman RM (2015) Comparison of the selective targeting of Salmonella typhimurium A1-R and VNP20009 on the Lewis lung carcinoma in nude mice. Oncotarget 6:14625–14631

    PubMed Central  CrossRef  PubMed  Google Scholar 

  5. Matsumoto Y, Miwa S, Zhang Y, Hiroshima Y, Yano S, Uehara F et al (2014) Efficacy of tumor-targeting Salmonella typhimurium A1-R on nude mouse models of metastatic and disseminated human ovarian cancer. J Cell Biochem 115:1996–2003

    CAS  PubMed  Google Scholar 

  6. Matsumoto Y, Miwa S, Zhang Y, Zhao M, Yano S, Uehara F et al (2015) Intraperitoneal administration of tumor-targeting Salmonella typhimurium A1-R inhibits disseminated human ovarian cancer and extends survival in nude mice. Oncotarget 6:11369–11377

    PubMed Central  CrossRef  PubMed  Google Scholar 

  7. Zhao M, Yang M, Li X-M, Jiang P, Baranov E, Li S et al (2005) Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci U S A 102:755–760

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  8. Zhao M, Geller J, Ma H, Yang M, Penman S, Hoffman RM (2007) Monotherapy with a tumor-targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer. Proc Natl Acad Sci U S A 104:10170–10174

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  9. Zhang Y, Miwa S, Zhang N, Hoffman RM, Zhao M (2015) Tumor-targeting Salmonella typhimurium A1-R arrests growth of breast-cancer brain metastasis. Oncotarget 6:2615–2622

    PubMed Central  CrossRef  PubMed  Google Scholar 

  10. Miwa S, Yano S, Zhang Y, Matsumoto Y, Uehara F, Yamamoto M et al (2014) Tumor-targeting Salmonella typhimurium A1-R prevents experimental human breast cancer bone metastasis in nude mice. Oncotarget 5:7119–7125

    PubMed Central  CrossRef  PubMed  Google Scholar 

  11. Uchugonova A, Zhao M, Zhang Y, Weinigel M, König K, Hoffman RM (2012) Cancer-cell killing by engineered Salmonella imaged by multiphoton tomography in live mice. Anticancer Res 32:4331–4337

    CAS  PubMed  Google Scholar 

  12. Liu F, Zhang L, Hoffman RM, Zhao M (2010) Vessel destruction by tumor-targeting Salmonella typhimurium A1-R is enhanced by high tumor vascularity. Cell Cycle 9:4518–4524

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  13. Nagakura C, Hayashi K, Zhao M, Yamauchi K, Yamamoto N, Tsuchiya H et al (2009) Efficacy of a genetically-modified Salmonella typhimurium in an orthotopic human pancreatic cancer in nude mice. Anticancer Res 29:1873–1878

    PubMed  Google Scholar 

  14. Yam C, Zhao M, Hayashi K, Ma H, Kishimoto H, McElroy M et al (2010) Monotherapy with a tumor-targeting mutant of Salmonella typhimurium inhibits liver metastasis in a mouse model of pancreatic cancer. J Surg Res 164:248–255

    PubMed Central  CrossRef  PubMed  Google Scholar 

  15. Hayashi K, Zhao M, Yamauchi K, Yamamoto N, Tsuchiya H, Tomita K et al (2009) Cancer metastasis directly eradicated by targeted therapy with a modified Salmonella typhimurium. J Cell Biochem 106:992–998

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  16. Hayashi K, Zhao M, Yamauchi K, Yamamoto N, Tsuchiya H, Tomita K et al (2009) Systemic targeting of primary bone tumor and lung metastasis of high-grade osteosarcoma in nude mice with a tumor-selective strain of Salmonella typhimurium. Cell Cycle 8:870–875

    CrossRef  CAS  PubMed  Google Scholar 

  17. Miwa S, Zhang Y, Baek K-E, Uehara F, Yano S, Yamamoto M et al (2014) Inhibition of spontaneous and experimental lung metastasis of soft-tissue sarcoma by tumor-targeting Salmonella typhimurium A1-R. Oncotarget 5:12849–12861

    PubMed Central  CrossRef  PubMed  Google Scholar 

  18. Kimura H, Zhang L, Zhao M, Hayashi K, Tsuchiya H, Tomita K et al (2010) Targeted therapy of spinal cord glioma with a genetically-modified Salmonella typhimurium. Cell Prolif 43:41–48

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  19. Momiyama M, Zhao M, Kimura H, Tran B, Chishima T, Bouvet M et al (2012) Inhibition and eradication of human glioma with tumor-targeting Salmonella typhimurium in an orthotopic nude-mouse model. Cell Cycle 11:628–632

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  20. Hiroshima Y, Zhao M, Zhang Y, Maawy A, Hassanein MK, Uehara F et al (2013) Comparison of efficacy of Salmonella typhimurium A1-R and chemotherapy on stem-like and non-stem human pancreatic cancer cells. Cell Cycle 12:2774–2780

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  21. Hiroshima Y, Zhao M, Maawy A, Zhang Y, Katz MH, Fleming JB et al (2014) Efficacy of Salmonella typhimurium A1-R versus chemotherapy on a pancreatic cancer patient-derived orthotopic xenograft (PDOX). J Cell Biochem 115:1254–1261

    CrossRef  CAS  PubMed  Google Scholar 

  22. Hiroshima Y, Zhang Y, Murakami T, Maawy A, Miwa S, Yamamoto M (2014) Efficacy of tumor-targeting Salmonella typhimurium A1-R in combination with anti-angiogenesis therapy on a pancreatic cancer patient-derived orthotopic xenograft (PDOX) and cell-line mouse models. Oncotarget 5:12346–12356

    PubMed Central  CrossRef  PubMed  Google Scholar 

  23. Uchugonova A, Duong J, Zhang N, König K, Hoffman RM (2011) The bulge area is the origin of nestin-expressing pluripotent stem cells of the hair follicle. J Cell Biochem 112:2046–2050

    CrossRef  CAS  PubMed  Google Scholar 

  24. Zhao M, Suetsugu A, Ma H, Zhang L, Liu F, Zhang Y et al (2012) Efficacy against lung metastasis with a tumor-targeting mutant of Salmonella typhimurium in immunocompetent mice. Cell Cycle 11:187–193

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  25. Alpaugh ML, Tomlinson JS, Ye Y, Barsky SH (2002) Relationship of sialyl-Lewisx/a underexpression and E-cadherin overexpression in the lymphovascular embolus of inflammatory breast carcinoma. Am J Pathol 161:619–628

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  26. Basso DM, Beattie MS, Bresnahan JC, Anderson DK, Faden AI, Gruner JA et al (1996) MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. Multicenter Animal Spinal Cord Injury Study. J Neurotrauma 13:343–359

    CrossRef  CAS  PubMed  Google Scholar 

  27. Zhang Y, Tome Y, Suetsugu A, Zhang L, Zhang N, Hoffman RM et al (2012) Determination of the optimal route of administration of Salmonella typhimurium A1-R to target breast cancer in nude mice. Anticancer Res 32:2501–2508

    PubMed  Google Scholar 

  28. Yang M, Baranov E, Wang J-W, Jiang P, Wang X, Sun F-X et al (2002) Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. Proc Natl Acad Sci U S A 99:3824–3829

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  29. Tome Y, Zhang Y, Momiyama M, Maehara H, Kanaya F, Tomita K et al (2013) Primer dosing of S. typhimurium A1-R potentiates tumor-targeting and efficacy in immunocompetent mice. Anticancer Res 33:97–102

    PubMed  Google Scholar 

  30. Furukawa T, Kubota T, Watanabe M, Kitajima M, Hoffman RM (1993) A novel “patient-like” treatment model of human pancreatic cancer constructed using orthotopic transplantation of histologically intact human tumor tissue in nude mice. Cancer Res 53:3070–3072

    CAS  PubMed  Google Scholar 

  31. Fu X, Guadagni F, Hoffman RM (1992) A metastatic nude mouse model of human pancreatic cancer constructed orthotopically with histologically intact patient specimens. Proc Natl Acad Sci U S A 89:5645–5649

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  32. Hoffman RM (1999) Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs 17:343–359

    CrossRef  CAS  PubMed  Google Scholar 

  33. Bouvet M, Wang J-W, Nardin SR, Nassirpour R, Yang M, Baranov E et al (2002) Real-time optical imaging of primary tumor growth and multiple metastatic events in a pancreatic cancer orthotopic model. Cancer Res 62:1534–1540

    CAS  PubMed  Google Scholar 

  34. Bouvet M, Yang M, Nardin S, Wang X, Jiang P, Baranov E et al (2000) Chronologically-specific metastatic targeting of human pancreatic tumors in orthotopic models. Clin Exp Metastasis 18:213–218

    CrossRef  CAS  PubMed  Google Scholar 

  35. Kim MP, Evans DB, Wang H, Abbruzzese JL, Fleming JB, Gallick GE (2009) Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nat Protoc 4:1670–1680

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  36. Kim MP, Truty MJ, Choi W, Kang Y, Chopin-Lally X, Gallick GE et al (2012) Molecular profiling of direct xenograft tumors established from human pancreatic adenocarcinoma after neoadjuvant therapy. Ann Surg Oncol 19(Suppl3):S395–S403

    PubMed Central  CrossRef  PubMed  Google Scholar 

  37. Yang M, Reynoso J, Bouvet M, Hoffman RM (2009) A transgenic red fluorescent protein-expressing nude mouse for color-coded imaging of the tumor microenvironment. J Cell Biochem 106:279–284

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  38. Katz M, Takimoto S, Spivack D, Moossa AR, Hoffman RM, Bouvet M (2003) A novel red fluorescent protein orthotopic pancreatic cancer model for the preclinical evaluation of chemotherapeutics. J Surg Res 113:151–160

    CrossRef  CAS  PubMed  Google Scholar 

  39. Yamauchi K, Yang M, Jiang P, Xu M, Yamamoto N, Tsuchiya H et al (2006) Development of real-time subcellular dynamic multicolor imaging of cancer-cell trafficking in live mice with a variable-magnification whole-mouse imaging system. Cancer Res 66:4208–4214

    CrossRef  CAS  PubMed  Google Scholar 

  40. Yang M, Jiang P, Hoffman RM (2007) Whole-body subcellular multicolor imaging of tumor-host interaction and drug response in real time. Cancer Res 67:5195–5200

    CrossRef  CAS  PubMed  Google Scholar 

  41. Fu X, Hoffman RM (1993) Human ovarian carcinoma metastatic models constructed in nude mice by orthotopic transplantation of histologically-intact patient specimens. Anticancer Res 13:283–286

    CAS  PubMed  Google Scholar 

  42. Kiguchi K, Kubota T, Aoki D, Udagawa Y, Yamanouchi S, Saga M et al (1998) A patient-like orthotopic implantation nude mouse model of highly metastatic human ovarian cancer. Clin Exp Metastasis 16:751–756

    CrossRef  CAS  PubMed  Google Scholar 

  43. Zhang Y, Hiroshima Y, Ma H, Zhang N, Zhao M, Hoffman RM (2015) Complementarity of variable-magnification and spectral-separation fluorescence imaging systems for noninvasive detection of metastasis and intravital detection of single cancer cells in mouse models. Anticancer Res 35:661–667

    CAS  PubMed  Google Scholar 

  44. Momiyama M, Suetsugu A, Chishima T, Bouvet M, Endo I, Hoffman RM (2013) Subcellular real-time imaging of the efficacy of temozolomide on cancer cells in the brain of live mice. Anticancer Res 33:103–106

    CAS  PubMed  Google Scholar 

  45. Momiyama M, Suetsugu A, Kimura H, Chishima T, Bouvet M, Endo I et al (2013) Dynamic subcellular imaging of cancer cell mitosis in the brain of live mice. Anticancer Res 33:1367–1371

    PubMed  Google Scholar 

  46. Hassanein MK, Suetsugu A, Saji S, Moriwaki H, Bouvet M, Moossa AR et al (2011) Stem-like and non-stem human pancreatic cancer cells distinguished by morphology and metastatic behavior. J Cell Biochem 112:3549–3554

    CrossRef  CAS  PubMed  Google Scholar 

  47. Hoffman RM, Zhao M (2006) Whole-body imaging of bacterial infection and antibiotic response. Nat Protoc 1:2988–2994

    CrossRef  CAS  PubMed  Google Scholar 

  48. Yang M, Luiken G, Baranov E, Hoffman RM (2005) Facile whole-body imaging of internal fluorescent tumors in mice with an LED flashlight. Biotechniques 39:170–172

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Hoffman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hoffman, R.M., Zhao, M. (2016). Methods for Tumor Targeting with Salmonella typhimurium A1-R. In: Hoffman, R. (eds) Bacterial Therapy of Cancer. Methods in Molecular Biology, vol 1409. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3515-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3515-4_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3513-0

  • Online ISBN: 978-1-4939-3515-4

  • eBook Packages: Springer Protocols