Skip to main content

Isolation and Analysis of Suppressor Mutations in Tumor-Targeted msbB Salmonella

  • Protocol
  • First Online:
Bacterial Therapy of Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1409))

Abstract

Tumor-targeted Salmonella offers a promising approach to the delivery of therapeutics for the treatment of cancer. The Salmonella strains used, however, must be stably attenuated in order to provide sufficient safety for administration. Approaches to the generation of attenuated Salmonella strains have included deletion of the msbB gene that is responsible for addition of the terminal myristol group to lipid A. In the absence of myristoylation, lipid A is no longer capable of inducing septic shock, resulting in a significant enhancement in safety. However, msbB Salmonella strains also exhibit an unusual set of additional physiological characteristics, including sensitivities to NaCl, EGTA, deoxycholate, polymyxin, and CO2. Suppressor mutations that compensate for these sensitivities include somA, Suwwan, pmrA C, and zwf. We describe here methods for isolation of strains with compensatory mutations that suppress these types of sensitivities and techniques for determining their underlying genetic changes and analysis of their effects in murine tumor models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall SS (1997) A commotion in the blood: Life, death, and the immune system. Henry Holt, New York

    Google Scholar 

  2. Nauts HC, Swift WE, Coley BL (1946) The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, MD, reviewed in the light of modern research. Cancer Res 6:205–216

    CAS  PubMed  Google Scholar 

  3. Coley WB (1891) Contribution to the knowledge of sarcoma. Ann Surg 14:199–220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Fehleisen F (1883) Die etiologie des erysipels. Berlin. (as cited by Coley in Ref. 3)

    Google Scholar 

  5. Parker RC, Plummer HC, Siebenmann CO, Chapman MG (1947) Effect of histolyticus infection and toxin on transplantable mouse tumors. Proc Soc Exp Biol Med 66:461–467

    Article  CAS  PubMed  Google Scholar 

  6. Möse JR, Möse G (1964) Oncolysis by clostridia. I. Activity of Clostridium butyricum (M-55) and other nonpathogenic clostridia against the Ehrlich carcinoma. Cancer Res 24:212–216

    Google Scholar 

  7. Carey RW, Holland JF, Whang HY, Neter E, Bryant B (1967) Clostridial oncolysis in man. Eur J Cancer 3:37–46

    Article  Google Scholar 

  8. Fox ME, Lemmon M, Mauchline ML, Davis TO, Giaccia AJ, Minton NP, Brown JM (1996) Anaerobic bacteria as a delivery system for cancer gene therapy: In vitro activation of 5-fluorocytosine by genetically engineered clostridia. Gene Ther 3:173–178

    CAS  PubMed  Google Scholar 

  9. Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B (2001) Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci U S A 98:15155–15160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Dolgin E (2011) From spinach scare to cancer care. Nat Med 17:273–275

    Article  CAS  PubMed  Google Scholar 

  11. Forbes NS (2010) Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer 10:785–794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Bermudes D, Low KB, Pawelek JM (2000) Tumor-targeted Salmonella. Highly selective delivery vectors. Adv Exp Med Biol 465:57–63

    Article  CAS  PubMed  Google Scholar 

  13. Bermudes D, Low KB, Pawelek J (2000) Tumor-targeted Salmonella: Strain development and expression of the HSV TK effector gene. In: Walther W, Stein U (eds) Gene therapy: methods and protocols, vol 35. Humana, Totowa, NJ, pp 419–436

    Google Scholar 

  14. Darveau R (1999) Infection, inflammation and cancer. Nat Biotechnol 17:19

    Article  CAS  PubMed  Google Scholar 

  15. Low KB, Ittensohn M, Le T, Platt J, Sodi S, Amoss M, Ash O, Carmichael E, Chakraborty A, Fisher J, Lin SL, Luo X, Miller SI, Zheng Limou King I, Pawelek JM, Bermudes D (1999) Lipid A mutant Salmonella with suppressed virulence and TNFα induction retain tumor-targeting in vivo. Nat Biotechnol 17:37–41

    CAS  PubMed  Google Scholar 

  16. Pawelek JM, Low KB, Bermudes D (1997) Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res 57:4537–4544

    CAS  PubMed  Google Scholar 

  17. Pawelek JM, Low KB, Bermudes D (2003) Bacteria as tumour-targeting vectors. Lancet Oncol 4:548–556

    Article  PubMed  Google Scholar 

  18. ClinicalTrials.gov. Identifier: NCT01118819, Safety study of Clostridium novyi-NT spores to treat patients with solid tumors that have not responded to standard therapies

    Google Scholar 

  19. ClinicalTrials.gov. Identifier: NCT01598792, Safety study of recombinant Listeria monocytogenes (Lm) based vaccine virus vaccine to treat oropharyngeal Cancer (REALISTIC)

    Google Scholar 

  20. ClinicalTrials.gov. Identifier: NCT01675765, CRS-207 Cancer vaccine in combination with chemotherapy as front-line treatment for malignant pleural mesothelioma

    Google Scholar 

  21. Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ, Sherry RM, Topalian SL, Yang JC, Stock F, Freezer LJ, Morton KE, Seipp C, Haworth L, Mavroukakis S, White D, MacDonald S, Mao J, Sznol M, Rosenberg SA (2002) Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol 20:142–152

    Article  PubMed Central  PubMed  Google Scholar 

  22. Nemunaitis J, Cunningham C, Senzer N, Kuhn J, Cramm J, Litz C, Cavagnolo R, Cahill A, Clairmont C, Sznol M (2003) Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther 10:737–744

    Article  CAS  PubMed  Google Scholar 

  23. ClinicalTrials.gov. Identifier: NCT00004988, Treatment of patients with cancer with genetically modified Salmonella typhimurium bacteria

    Google Scholar 

  24. Zhao M, Yang M, Li X-M, Jiang P, Li S, Xu M, Hoffman RM (2005) Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci U S A 102:755–760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Zhao M, Yang M, Ma H, Li X, Tan X, Li S, Yang Z, Hoffman RM (2006) Targeted therapy with a Salmonella typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res 66:7647–7652

    Article  CAS  PubMed  Google Scholar 

  26. Zhao M, Geller J, Ma H, Yang M, Penman S, Hoffman RM (2007) Monotherapy with a tumor-targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer. Proc Natl Acad Sci U S A 104:10170–10174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Hiroshima Y, Zhao M, Zhang Y, Maawy A, Hassanein MK, Uehara F, Miwa S, Yano S, Momiyama M, Suetsugu A, Chishima T, Tanaka K, Bouvet M, Endo I, Hoffman RM (2013) Comparison of efficacy of Salmonella typhimurium A1-R and chemotherapy on stem-like and non-stem human pancreatic cancer cells. Cell Cycle 12:2774–2780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. ClinicalTrials.gov. Identifier: NCT01099631, IL-2 expressing, attenuated Salmonella typhimurium in unresectable hepatic spread

    Google Scholar 

  29. Low KB, Ittensohn M, Luo X, Zheng L-M, King I, Pawelek JM, Bermudes D (2004) Construction of VNP20009, a novel, genetically stable antibiotic sensitive strain of tumor-targeting Salmonella for parenteral administration in humans. Methods Mol Med 90:47–60

    Google Scholar 

  30. Murray SR, Bermudes D, de Felipe KS, Low KB (2001) Extragenic suppressors of growth defects in msbB Salmonella. J Bacteriol 183:5554–5561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Murray SR, Suwwan de Felipe K, Obuchowski PL, Pike J, Bermudes D, Low KB (2004) Hot spot for a large deletion in the 18–19 Cs region confers a multiple phenotype in Salmonella enterica serovar Typhimurium strain ATCC 14028. J Bacteriol 186:8516–8523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Murray SR, Ernst RK, Bermudes D, Miller SI, Low KB (2007) PmrA(Con) confers pmrHFIJKL-dependent EGTA and polymyxin resistance on msbB Salmonella by decorating Lipid A with phosphoethanolamine. J Bacteriol 189:5161–5169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Karsten V, Murray SR, Pike J, Troy K, Ittensohn M, Kondradzhyan M, Low KB, Bermudes D (2009) msbB deletion confers acute sensitivity to CO2 in Salmonella enterica serovar Typhimurium that can be suppressed by a loss-of-function mutation in zwf. BMC Microbiol 189:170. doi:10.1186/1471-2180-9-170.33

    Article  Google Scholar 

  34. Karow M, Georgopoulos C (1992) Isolation and characterization of the Escherichia coli msbB gene, a multicopy suppressor of null mutations in the high-temperature requirement gene htrB. J Bacteriol 174:702–710

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Engel H, Smink AJ, van Wijngaarden L, Keck W (1992) Murine-metabolizing enzymes from Escherichia coli: existence of a second lytic transglycosylase. J Bacteriol 174:6394–6403

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Kahn SA, Everest P, Servos S, Foxwell N, Zahringer U, Brade H, Rietschel ET, Dougan G, Charles IG, Maskell D (1998) A lethal role for lipid a in Salmonella infections. Mol Microbiol 29:571–579

    Google Scholar 

  37. Carty S, Sreekumar K, Raetz C (1999) Effect of cold shock on lipid A biosynthesis in Escherichia coli. J Biol Chem 274:9677–9685

    Google Scholar 

  38. Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B (1990) Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249:912–915

    Article  CAS  PubMed  Google Scholar 

  39. Beadle GW, Ephrussi B (1936) Development of eye colors in Drosophila: transplantation experiments with suppressor of vermillion. Proc Natl Acad Sci U S A 22:536–540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Crick F, Barnett L, Brenner S, Watts-Tobin JR (1961) General nature of the genetic code for proteins. Nature 192:1227–1232

    Article  CAS  PubMed  Google Scholar 

  41. Bossi L, Roth JR (1981) Four-base codons ACCA, ACCU and ACCC are recognized by the frameshift suppressor sufJ. Cell 24:489–496

    Article  Google Scholar 

  42. Ruiz N, Falcone B, Kahne D, Silhavy TJ (2005) Chemical conditionality: a genetic strategy to probe organelle assembly. Cell 121:307–317

    Article  CAS  PubMed  Google Scholar 

  43. Ruiz N, Kahne D, Silhavy TJ (2006) Advances in understanding bacterial outer-membrane biogenesis. Nat Rev Microbiol 4:57–66

    Article  PubMed  Google Scholar 

  44. Silhavy TJ, Kahane D, Walker S (2010) The bacterial cell envelope. In: Shapiro L, Losick R (eds) Cell Biology of Bacteria. Cold Spring Harbor Laboratory Press, Plainview, NY, pp 79–94

    Google Scholar 

  45. Wu T, Malinverni J, Ruiz N, Kim S, Silhavy TJ, Kahne D (2005) Identification of a multi-component complex required for outer membrane biogenesis. Cell 121:235–245

    Article  CAS  PubMed  Google Scholar 

  46. Beckwith J (2009) Genetic suppressors and recovery of repressed biochemical memory. J Biol Chem 284:12585–12592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Hartman PE, Roth JR (1973) Mechanisms of suppression. Adv Genet 17:1–105

    Article  CAS  PubMed  Google Scholar 

  48. Michels CA (2002) Suppression analysis. Chapter 8, In: CA Michels (Eds) Genetic techniques for biological research: A case study approach. Wiley and Sons. pp. 91–98. doi: 10.1002/0470846623

    Google Scholar 

  49. Prelich G (1999) Suppression mechanisms: themes and variations. Trends Genet 15:261–266

    Article  CAS  PubMed  Google Scholar 

  50. Okuda S, Tokuda H (2011) Lipoprotein sorting in bacteria. Annu Rev Microbiol 65:239–259

    Article  CAS  PubMed  Google Scholar 

  51. Raivio TL, Silhavy TJ (2001) Periplasmic stress and ECF sigma factors. Annu Rev Microbiol 55:591–624

    Article  CAS  PubMed  Google Scholar 

  52. Ruiz N, Silhavy TJ (2005) Sensing external stress: watchdogs of the Escherichia coli cell envelope. Curr Opin Microbiol 8:122–126

    Article  CAS  PubMed  Google Scholar 

  53. De Las Penas A, Connolly L, Gross CA (1997) SigmaE is an essential sigma factor in Escherichia coli. J Bacteriol 179:6862–6864

    PubMed Central  PubMed  Google Scholar 

  54. Alba BM, Gross CA (2004) Regulation of the Escherichia coli sigma-dependent envelope stress response. Mol Microbiol 52:613–619

    Article  CAS  PubMed  Google Scholar 

  55. Button JE, Silhavy TJ, Ruiz N (2007) A suppressor of cell death caused by the loss of sigmaE downregulates extracytoplasmic stress responses and outer membrane vesicle production in Escherichia coli. J Bacteriol 189:1523–1530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Hayden JD, Ades SE (2008) The extracytoplasmic stress factor, σE, is required to maintain cell envelope integrity in Escherichia coli. PLoS One 3(2), e1573. doi:10.1371/journal.pone.0001573

    Article  PubMed Central  PubMed  Google Scholar 

  57. Rowley G, Spector M, Kormanec J, Roberts M (2006) Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol 4:383–394

    Article  CAS  PubMed  Google Scholar 

  58. Paradis-Bleau C, Markovski M, Uehara T, Lupoli TJ, Walker S, Kahne DE, Bernhardt TG (2010) Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases. Cell 143:1110–112026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Typas A, Banzhaf M, van Saparoea B, Verheul J, Bilboy J, Nichols RJ, Zietek M, Beilharz K, Kannenberg K, von Rechenberg M, Breukink E, den Blaauwen T, Gross CA, Vollmer W (2010) Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell 143:1097–1109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Qi S-Y, Sukupolvi S, O’Connor CD (1991) Outer membrane permeability of Escherichia coli K12: Isolation, cloning and mapping of suppressors of a defined antibiotic-hypersensitive mutant. Mol Gen Genet 229:421–427

    Article  CAS  PubMed  Google Scholar 

  61. Tsai SP, Hartin RJ, Ryu J-I (1989) Transformation in restriction-deficient Salmonella typhimurium LT2. J Gen Microbiol 135:2561–2567

    CAS  PubMed  Google Scholar 

  62. Kleckner N, Bender J, Gottesman S (1991) Uses of transposons with emphasis on the Tn10. Methods Enzymol 204:139–180

    Article  CAS  PubMed  Google Scholar 

  63. Miller JH (1992) A short course in bacterial genetics. Cold Spring Harbor Laboratory Press, Plainview, NY

    Google Scholar 

  64. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Plainview, NY

    Google Scholar 

  65. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganism. J Mol Biol 3:208–21848

    Article  CAS  Google Scholar 

  66. Kolodkin AL, Capage MA, Golub EI, Low KB (1983) F sex factor of Escherichia coli K-12 codes for a single-stranded DNA binding protein. Proc Natl Acad Sci U S A 80:4422–4426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23:1087–1088

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. O’Callaghan D, Charbit A (1990) High efficiency transformation of Salmonella typhimurium and Salmonella typhi by electroporation. Mol Gen Genet 223:156–158

    Google Scholar 

  69. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, Hou S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A, Grewal N, Mulvaney E, Ryan E, Sun H, Florea L, Miller W, Stoneking T, Nhan M, Waterston RK (2001) Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856

    Article  CAS  PubMed  Google Scholar 

  70. Wu TT (1966) A model for three-point analysis of random generalized transduction. Genetics 54:405–410

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Clairmont C, Lee KC, Pike J, Ittensohn M, Low KB, Pawelek J, Bermudes D, Brecher SM, Margitich D, Turnier J, Li Z, Luo X, King I, Zheng L-M (2000) Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimurium. J Infect Dis 181:1996–2002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by start-up funds from the California State University, Northridge College of Mathematics and Science (for DB). KBL, JP, and DB express their admiration for the late Helen Coley Nauts (1907–2001) and appreciation for her meeting with them in April 2000 to discuss the work of her late father William B. Coley. We also thank the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Bermudes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Low, K.B., Murray, S.R., Pawelek, J., Bermudes, D. (2016). Isolation and Analysis of Suppressor Mutations in Tumor-Targeted msbB Salmonella . In: Hoffman, R. (eds) Bacterial Therapy of Cancer. Methods in Molecular Biology, vol 1409. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3515-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3515-4_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3513-0

  • Online ISBN: 978-1-4939-3515-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics