Skip to main content

Optogenetic Light Crafting Tools for the Control of Cardiac Arrhythmias

  • Protocol
  • First Online:
Book cover Optogenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1408))

Abstract

The control of spatiotemporal dynamics in biological systems is a fundamental problem in nonlinear sciences and has important applications in engineering and medicine. Optogenetic tools combined with advanced optical technologies provide unique opportunities to develop and validate novel approaches to control spatiotemporal complexity in neuronal and cardiac systems. Understanding of the mechanisms and instabilities underlying the onset, perpetuation, and control of cardiac arrhythmias will enable the development and translation of novel therapeutic approaches. Here we describe in detail the preparation and optical mapping of transgenic channelrhodopsin-2 (ChR2) mouse hearts, cardiac cell cultures, and the optical setup for photostimulation using digital light processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knollmann BC (2010) Pacing lightly: optogenetics gets to the heart. Nat Methods 7:889–891

    Article  CAS  PubMed  Google Scholar 

  2. Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29

    Article  CAS  PubMed  Google Scholar 

  3. Rein ML, Deussing JM (2012) The optogenetic (r)evolution. Mol Genet Genomics 287:95–109

    Article  CAS  PubMed  Google Scholar 

  4. Bruegmann T, Malan D, Hesse M, Beiert T, Fuegemann CJ, Fleischmann BK, Sasse P (2010) Optogenetic control of heart muscle in vitro and in vivo. Nat Methods 7:897–900

    Article  CAS  PubMed  Google Scholar 

  5. Davidenko JM, Pertsov AV, Salamonsz R, Baxter W, Jalife J (1992) Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355:349–351

    Article  CAS  PubMed  Google Scholar 

  6. Panfilov AV, Holden AV (1990) Self-generation of turbulent vortices in a two dimensional model of cardiac tissue. Phys Lett A 151:23–26

    Article  Google Scholar 

  7. Jalife J, Gray RA, Morley GE, Davidenko JM (1998) Self-organization and the dynamical nature of ventricular fibrillation. Chaos 8:79–93

    Article  PubMed  Google Scholar 

  8. Walcott GP, Killingsworth CR, Ideker RE (2003) Do clinically relevant transthoracic defibrillation energies cause myocardial damage and dysfunction? Resuscitation 59:59–70

    Article  PubMed  Google Scholar 

  9. Zipes DP, Jalife J (eds) (2009) Cardiac electrophysiology: from cell to bedside. Saunders/Elsevier, Philadelphia. ISBN 9781416059738

    Google Scholar 

  10. Fenton FH, Luther S, Cherry EM, Otani NF, Krinsky VI, Pumir A, Bodenschatz E, Gilmour RF (2009) Termination of atrial fibrillation using pulsed low-energy far-field stimulation. Circulation 120:467–476

    Article  PubMed  PubMed Central  Google Scholar 

  11. Luther S, Fenton FH, Kornreich BG, Squires A, Bittihn P, Hornung D, Zabel M, Flanders J, Gladuli A, Campoy L, Cherry EM, Luther G, Hasenfuss G, Krinsky VI, Pumir A, Gilmour RF Jr, Bodenschatz E (2011) Low-energy control of electrical turbulence in the heart. Nature 475:235–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bruegmann T, Malan D, Hesse M, Beiert T, Fuegemann CJ, Fleischmann BK, Sasse P (2011) Channelrhodopsin2 expression in cardiomyocytes: a new tool for light-induced depolarization with high spatiotemporal resolution in vitro and in vivo. Thorac cardiovasc Surg 59-S01:MO19. doi:10.1055/s-0030-1269109

    Google Scholar 

  13. Sasse P (2011) Optical pacing of the heart: the long way to enlightenment. Circ Arrhythm Electrophysiol 4:598–600

    Article  PubMed  Google Scholar 

  14. Stirman JN, Crane MM, Husson SJ, Gottschalk A, Lu H (2012) A multispectral optical illumination system with precise spatiotemporal control for the manipulation of optogenetic reagents. Nat Protoc 7:207–220

    Article  CAS  PubMed  Google Scholar 

  15. Herron TJ, Lee P, Jalife J (2012) Optical imaging of voltage and calcium in cardiac cells & tissues. Circ Res 110:609–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ambrosi CM, Entcheva E (2014) Chapter 19—Optogenetic control of cardiomyocytes via viral delivery. In: Milica Radisic, Lauren D. Black III (eds) Methods in molecular biology, vol 1181, chapter 19. Springer Science+Business Media. pp 215–228

    Google Scholar 

  17. Loew LM (2010) Design and use of organic voltage sensitive dyes. In: Canepari M, Zecevic D (eds) Membrane potential imaging in the nervous system: methods and applications, chapter 2. Springer Science+Business Media pp 13–23

    Google Scholar 

  18. Josephson ME (2008) Clinical cardiac electrophysiology: techniques and interpretations. Solution (Lippincott Williams & Wilkins). Wolters Kluwer Health/Lippincott Williams & Wilkins. ISBN 9780781777391

    Google Scholar 

  19. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639

    Article  CAS  PubMed  Google Scholar 

  20. Jia Z, Valiunas V, Lu Z, Bien H, Liu H, Wang H-Z, Rosati B, Brink PR, Cohen IS, Entcheva E (2011) Stimulating cardiac muscle by light: cardiac optogenetics by cell delivery. Circ Arrhythm Electrophysiol 4:753–760

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The pcDNA3.1/hChR2(H134R)-mCherry was provided by Karl Deisseroth (Addgene plasmid # 20938). We also want to thank M. Kunze and T. Althaus for their technical assistance. The research leading to the results has received funding from the European Community’s Seventh Framework Programme FP7/2007-2013 under Grant Agreement No. HEALTH-F2-2009-241526, EUTrigTreat. The authors acknowledge support from the German Federal Ministry of Education and Research (BMBF) (project FKZ 031A147, GO-Bio), the German Research Foundation (DFG) (Collaborative Research Centers SFB 1002, Projects B05 and C03 and SFB 937 Project A18), and the German Center for Cardiovascular Research (DZHK e.V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Richter, C., Christoph, J., Lehnart, S.E., Luther, S. (2016). Optogenetic Light Crafting Tools for the Control of Cardiac Arrhythmias. In: Kianianmomeni, A. (eds) Optogenetics. Methods in Molecular Biology, vol 1408. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3512-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3512-3_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3510-9

  • Online ISBN: 978-1-4939-3512-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics