Skip to main content

Optogenetic Approaches for Mesoscopic Brain Mapping

  • Protocol
  • First Online:
Optogenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1408))

Abstract

Recent advances in identifying genetically unique neuronal proteins has revolutionized the study of brain circuitry. Researchers are now able to insert specific light-sensitive proteins (opsins) into a wide range of specific cell types via viral injections or by breeding transgenic mice. These opsins enable the activation, inhibition, or modulation of neuronal activity with millisecond control within distinct brain regions defined by genetic markers. Here we present a useful guide to implement this technique into any lab. We first review the materials needed and practical considerations and provide in-depth instructions for acute surgeries in mice. We conclude with all-optical mapping techniques for simultaneous recording and manipulation of population activity of many neurons in vivo by combining arbitrary point optogenetic stimulation and regional voltage-sensitive dye imaging. It is our intent to make these methods available to anyone wishing to use them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lim DH, Mohajerani MH, LeDue J et al (2012) In vivo large-scale cortical mapping using channelrhodopsin-2 stimulation in transgenic mice reveals asymmetric and reciprocal relationships between cortical areas. Front Neural Circuits 6:1–19. doi:10.3389/fncir.2012.00011

    Article  Google Scholar 

  2. Lim DH, LeDue JM, Mohajerani MH, Murphy TH (2014) Optogenetic mapping after stroke reveals network-wide scaling of functional connections and heterogeneous recovery of the peri-infarct. J Neurosci 34:16455–16466. doi:10.1523/JNEUROSCI.3384-14.2014

    Article  CAS  PubMed  Google Scholar 

  3. Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  4. Packer AM, Roska B, Häusser M (2013) Targeting neurons and photons for optogenetics. Nat Neurosci 16:805–815. doi:10.1038/nn.3427

    Article  CAS  PubMed  Google Scholar 

  5. Lin JY (2012) Optogenetic excitation of neurons with channelrhodopsins: Light instrumentation, expression systems, and channelrhodopsin variants. In: Knopfel T, Boyden ES (eds) Prog Brain Res. pp 29–47

    Google Scholar 

  6. Lima SQ, Hromádka T, Znamenskiy P, Zador AM (2009) PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS One. doi:10.1371/journal.pone.0006099

    Google Scholar 

  7. Moore AK, Wehr M (2013) Parvalbumin-expressing inhibitory interneurons in auditory cortex are well-tuned for frequency. J Neurosci 33:13713–13723. doi:10.1523/JNEUROSCI.0663-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gentet LJ, Kremer Y, Taniguchi H et al (2012) Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex. Nat Neurosci 15:607–612. doi:10.1038/nn.3051

    Article  CAS  PubMed  Google Scholar 

  9. Pfeffer CK, Xue M, He M et al (2013) Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat Neurosci 16:1068–1076. doi:10.1038/nn.3446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shepherd GMG, Stepanyants A, Bureau I et al (2005) Geometric and functional organization of cortical circuits. Nat Neurosci 8:782–790. doi:10.1038/nn1447

    Article  CAS  PubMed  Google Scholar 

  11. Chen S, Mohajerani MH, Xie Y, Murphy TH (2012) Optogenetic analysis of neuronal excitability during global ischemia reveals selective deficits in sensory processing following reperfusion in mouse cortex. J Neurosci 32:13510–13519. doi:10.1523/JNEUROSCI.1439-12.2012

    Article  CAS  PubMed  Google Scholar 

  12. Packer AM, Russell LE, Dalgleish HWP, Häusser M (2015) Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat Methods 12:140–146. doi:10.1038/nmeth.3217

    Article  CAS  PubMed  Google Scholar 

  13. Chow BY, Han X, Boyden ES (2012) Genetically encoded molecular tools for light-driven silencing of targeted neurons, 1st ed. Prog Brain Res 196:49–61. doi:10.1016/B978-0-444-59426-6.00003-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mohajerani MH, Chan AW, Mohsenvand M et al (2013) Spontaneous cortical activity alternates between motifs defined by regional axonal projections. Nat Neurosci 16:1426–35. doi:10.1038/nn.3499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chan AW, Mohajerani MH, Ledue JM et al (2015) Mesoscale infraslow spontaneous membrane potential fluctuations recapitulate high-frequency activity cortical motifs. Nat Commun. doi:10.1038/ncomms8738

    Google Scholar 

  16. Grinvald A, Hildesheim R (2004) VSDI: a new era in functional imaging of cortical dynamics. Nat Rev Neurosci 5:874–885. doi:10.1038/nrn1536

    Article  CAS  PubMed  Google Scholar 

  17. Akemann W, Mutoh H, Perron A et al (2012) Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. J Neurophysiol 108:2323–2337. doi:10.1152/jn.00452.2012

    Article  CAS  PubMed  Google Scholar 

  18. Chen T-W, Wardill TJ, Sun Y et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300. doi:10.1038/nature12354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shoham D, Glaser DE, Arieli A et al (1999) Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes. Neuron 24:791–802, doi: S0896-6273(00)81027-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  20. Suter BA, O’Connor T, Iyer V et al (2010) Ephus: multipurpose data acquisition software for neuroscience experiments. Front Neurosci 4:1–12. doi:10.3389/fnins.2010.00053

    Google Scholar 

Download references

Acknowledgments

This work was supported from the Natural Sciences and Engineering Research Council of Canada Discovery Grant, the Alberta Alzheimer Resear ch Program, and the Alberta Innovates: Health Solutions to M.H.M. and NSERC CREATE BIP Postdoctoral Trainee Grant to M.K. M.H.M. is the holder of the CAIP chair in Brain Function in Health and Dementia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid H. Mohajerani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kyweriga, M., Mohajerani, M.H. (2016). Optogenetic Approaches for Mesoscopic Brain Mapping. In: Kianianmomeni, A. (eds) Optogenetics. Methods in Molecular Biology, vol 1408. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3512-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3512-3_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3510-9

  • Online ISBN: 978-1-4939-3512-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics