Skip to main content

Studying Chemoattractant Signal Transduction Dynamics in Dictyostelium by BRET

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1407))

Abstract

Understanding the dynamics of chemoattractant signaling is key to our understanding of the mechanisms underlying the directed migration of cells, including that of neutrophils to sites of infections and of cancer cells during metastasis. A model frequently used for deciphering chemoattractant signal transduction is the social amoeba Dictyostelium discoideum. However, the methods available to quantitatively measure chemotactic signaling are limited. Here, we describe a protocol to quantitatively study chemoattractant signal transduction in Dictyostelium by monitoring protein–protein interactions and conformational changes using Bioluminescence Resonance Energy Transfer (BRET).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. King JS, Insall RH (2009) Chemotaxis: finding the way forward with Dictyostelium. Trends Cell Biol 19:523–530

    Article  CAS  PubMed  Google Scholar 

  2. Loomis WF (2014) Cell signaling during development of Dictyostelium. Dev Biol 391:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Artemenko Y, Lampert TJ, Devreotes PN (2014) Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell Mol Life Sci 71:3711–3747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Janetopoulos C, Jin T, Devreotes P (2001) Receptor-mediated activation of heterotrimeric G-proteins in living cells. Science 291:2408–2411

    Article  CAS  PubMed  Google Scholar 

  5. Gardiner EM, Pestonjamasp KN, Bohl BP et al (2002) Spatial and temporal analysis of Rac activation during live neutrophil chemotaxis. Curr Biol 12:2029–2034

    Article  CAS  PubMed  Google Scholar 

  6. Wong K, Pertz O, Hahn K, Bourne H (2006) Neutrophil polarization: spatiotemporal dynamics of RhoA activity support a self-organizing mechanism. Proc Natl Acad Sci U S A 103:3639–3644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Han JW, Leeper L, Rivero F, Chung CY (2006) Role of RacC for the regulation of WASP and phosphatidylinositol 3-kinase during chemotaxis of Dictyostelium. J Biol Chem 281:35224–35234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bagorda A, Das S, Rericha EC et al (2009) Real-time measurements of cAMP production in live Dictyostelium cells. J Cell Sci 122:3907–3914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu X, Brzostowski JA, Jin T (2009) Monitoring dynamic GPCR signaling events using fluorescence microscopy, FRET imaging, and single-molecule imaging. Methods Mol Biol 571:371–383

    Article  CAS  PubMed  Google Scholar 

  10. Xu X, Brzostowski JA, Jin T (2006) Using quantitative fluorescence microscopy and FRET imaging to measure spatiotemporal signaling events in single living cells. Methods Mol Biol 346:281–296

    CAS  PubMed  Google Scholar 

  11. Herman B, Krishnan RV, Centonze VE (2004) Microscopic analysis of fluorescence resonance energy transfer (FRET). Methods Mol Biol 261:351–370

    CAS  PubMed  Google Scholar 

  12. Hamdan FF, Percherancier Y, Breton B, Bouvier M (2006) Monitoring protein-protein interactions in living cells by bioluminescence resonance energy transfer (BRET). Curr Protoc Neurosci Chapter 5:Unit 5

    Google Scholar 

  13. Loening AM, Fenn TD, Wu AM, Gambhir SS (2006) Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng Des Sel 19:391–400

    Article  CAS  PubMed  Google Scholar 

  14. Xu Y, Piston DW, Johnson CH (1999) A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci U S A 96:151–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Angers S, Salahpour A, Joly E et al (2000) Detection of β2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci U S A 97:3684–3689

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bertrand L, Parent S, Caron M et al (2002) The BRET2/arrestin assay in stable recombinant cells: a platform to screen for compounds that interact with G protein-coupled receptors (GPCRs). J Recept Signal Transduct Res 22:533–541

    Article  CAS  PubMed  Google Scholar 

  17. Zhang L, Xu F, Chen Z et al (2013) Bioluminescence assisted switching and fluorescence imaging (BASFI). J Phys Chem Lett 4:3897–3902

    Article  CAS  Google Scholar 

  18. De A, Ray P, Loening AM, Gambhir SS (2009) BRET3: a red-shifted bioluminescence resonance energy transfer (BRET)-based integrated platform for imaging protein-protein interactions from single live cells and living animals. FASEB J 23:2702–2709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Achour L, Kamal M, Jockers R, Marullo S (2011) Using quantitative BRET to assess G protein-coupled receptor homo- and heterodimerization. Methods Mol Biol 756:183–200

    Article  CAS  PubMed  Google Scholar 

  20. Kocan M, Pfleger KD (2011) Study of GPCR-protein interactions by BRET. Methods Mol Biol 746:357–371

    Article  CAS  PubMed  Google Scholar 

  21. Mizuno N, Suzuki T, Kishimoto Y, Hirasawa N (2013) Biochemical assay of G protein-coupled receptor oligomerization: adenosine A1 and thromboxane A2 receptors form the novel functional hetero-oligomer. Methods Cell Biol 117:213–227

    Article  CAS  PubMed  Google Scholar 

  22. Borroto-Escuela DO, Flajolet M, Agnati LF et al (2013) Bioluminescence resonance energy transfer methods to study G protein-coupled receptor-receptor tyrosine kinase heteroreceptor complexes. Methods Cell Biol 117:141–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ciruela F (2008) Fluorescence-based methods in the study of protein-protein interactions in living cells. Curr Opin Biotechnol 19:338–343

    Article  CAS  PubMed  Google Scholar 

  24. Kumagai A, Hadwiger JA, Pupillo M, Firtel RA (1991) Molecular genetic analysis of two Gα protein subunits in Dictyostelium. J Biol Chem 266:1220–1228

    CAS  PubMed  Google Scholar 

  25. Wu L, Valkema R, Van Haastert PJ, Devreotes PN (1995) The G protein β subunit is essential for multiple responses to chemoattractants in Dictyostelium. J Cell Biol 129:1667–1675

    Article  CAS  PubMed  Google Scholar 

  26. Veltman DM, Akar G, Bosgraaf L, Van Haastert PJ (2009) A new set of small, extrachromosomal expression vectors for Dictyostelium discoideum. Plasmid 61:110–118

    Article  CAS  PubMed  Google Scholar 

  27. Fey P, Dodson RJ, Basu S, Chisholm RL (2013) One stop shop for everything Dictyostelium: dictyBase and the Dicty Stock Center in 2012. Methods Mol Biol 983:59–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Theibert A, Devreotes PN (1983) Cyclic 3′, 5′-AMP relay in Dictyostelium discoideum: adaptation is independent of activation of adenylate cyclase. J Cell Biol 97:173–177

    Article  CAS  PubMed  Google Scholar 

  29. Brenner M, Thoms SD (1984) Caffeine blocks activation of cyclic AMP synthesis in Dictyostelium discoideum. Dev Biol 101:136–146

    Article  CAS  PubMed  Google Scholar 

  30. Mahadeo DC, Parent CA (2006) Signal relay during the life cycle of Dictyostelium. Curr Top Dev Biol 73:115–140

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Michel Bouvier for providing BRET2 donor and acceptor cDNAs, to Chris Jenetopoulos for providing the Dictyostelium Gα2 and Gβ cDNAs, and to Billy Breton for constructive discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascale G. Charest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Islam, A.F.M.T., Stepanski, B.M., Charest, P.G. (2016). Studying Chemoattractant Signal Transduction Dynamics in Dictyostelium by BRET. In: Jin, T., Hereld, D. (eds) Chemotaxis. Methods in Molecular Biology, vol 1407. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3480-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3480-5_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3478-2

  • Online ISBN: 978-1-4939-3480-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics