Skip to main content

Mitochondrial Stress Tests Using Seahorse Respirometry on Intact Dictyostelium discoideum Cells

  • Protocol
  • First Online:
Chemotaxis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1407))

Abstract

Mitochondria not only play a critical and central role in providing metabolic energy to the cell but are also integral to the other cellular processes such as modulation of various signaling pathways. These pathways affect many aspects of cell physiology, including cell movement, growth, division, differentiation, and death. Mitochondrial dysfunction which affects mitochondrial bioenergetics and causes oxidative phosphorylation defects can thus lead to altered cellular physiology and manifest in disease. The assessment of the mitochondrial bioenergetics can thus provide valuable insights into the physiological state, and the alterations to the state of the cells. Here, we describe a method to successfully use the Seahorse XFe24 Extracellular Flux Analyzer to assess the mitochondrial respirometry of the cellular slime mold Dictyostelium discoideum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mayr-Wohlfart U, Waltenberger J, Hausser H et al (2002) Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone 30:472–477

    Article  CAS  PubMed  Google Scholar 

  2. Biber K, Zuurman MW, Dijkstra IM, Boddeke HW (2002) Chemokines in the brain: neuroimmunology and beyond. Curr Opin Pharmacol 2:63–68

    Article  CAS  PubMed  Google Scholar 

  3. Fernandis AZ, Ganju RK (2001) Slit: a roadblock for chemotaxis. Sci STKE 2001:pe1

    CAS  PubMed  Google Scholar 

  4. Rubel EW, Cramer KS (2002) Choosing axonal real estate: location, location, location. J Comp Neurol 448:1–5

    Article  PubMed  Google Scholar 

  5. Schneider L, Cammer M, Lehman J et al (2010) Directional cell migration and chemotaxis in wound healing response to PDGF-AA are coordinated by the primary cilium in fibroblasts. Cell Physiol Biochem 25:279–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Condeelis JS, Wyckoff JB, Bailly M et al (2001) Lamellipodia in invasion. Semin Cancer Biol 11:119–128

    Article  CAS  PubMed  Google Scholar 

  7. Worthley SG, Osende JI, Helft G et al (2001) Coronary artery disease: pathogenesis and acute coronary syndromes. Mt Sinai J Med 68:167–181

    CAS  PubMed  Google Scholar 

  8. Chung CY, Funamoto S, Firtel RA (2001) Signaling pathways controlling cell polarity and chemotaxis. Trends Biochem Sci 26:557–566

    Article  CAS  PubMed  Google Scholar 

  9. Iijima M, Huang YE, Devreotes P (2002) Temporal and spatial regulation of chemotaxis. Dev Cell 3:469–478

    Article  CAS  PubMed  Google Scholar 

  10. Franca-Koh J, Kamimura Y, Devreotes P (2006) Navigating signaling networks: chemotaxis in Dictyostelium discoideum. Curr Opin Genet Dev 16:333–338

    Article  CAS  PubMed  Google Scholar 

  11. Funamoto S, Meili R, Lee S et al (2002) Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109:611–623

    Article  CAS  PubMed  Google Scholar 

  12. van Haastert PJ, Keizer-Gunnink I, Kortholt A (2007) Essential role of PI3-kinase and phospholipase A2 in Dictyostelium discoideum chemotaxis. J Cell Biol 177:809–816

    Article  PubMed  PubMed Central  Google Scholar 

  13. Keizer-Gunnink I, Kortholt A, Van Haastert PJ (2007) Chemoattractants and chemorepellents act by inducing opposite polarity in phospholipase C and PI3-kinase signaling. J Cell Biol 177:579–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen L, Iijima M, Tang M et al (2007) PLA2 and PI3K/PTEN pathways act in parallel to mediate chemotaxis. Dev Cell 12:603–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Niles BJ, Powers T (2014) TOR complex 2-Ypk1 signaling regulates actin polarization via reactive oxygen species. Mol Biol Cell 25:3962–3972

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lee S, Comer FI, Sasaki A et al (2005) TOR complex 2 integrates cell movement during chemotaxis and signal relay in Dictyostelium. Mol Biol Cell 16:4572–4583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stephens L, Milne L, Hawkins P (2008) Moving towards a better understanding of chemotaxis. Curr Biol 18:R485–R494

    Article  CAS  PubMed  Google Scholar 

  18. Jacinto E, Loewith R, Schmidt A et al (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6:1122–1128

    Article  CAS  PubMed  Google Scholar 

  19. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35

    Article  CAS  PubMed  Google Scholar 

  20. Liu L, Das S, Losert W, Parent CA (2010) mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion. Dev Cell 19:845–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cai H, Das S, Kamimura Y et al (2010) Ras-mediated activation of the TORC2-PKB pathway is critical for chemotaxis. J Cell Biol 190:233–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Charest PG, Shen Z, Lakoduk A et al (2010) A Ras signaling complex controls the RasC-TORC2 pathway and directed cell migration. Dev Cell 18:737–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schmidt A, Kunz J, Hall MN (1996) TOR2 is required for organization of the actin cytoskeleton in yeast. Proc Natl Acad Sci U S A 93:13780–13785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kamada Y, Fujioka Y, Suzuki NN et al (2005) Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol Cell Biol 25:7239–7248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stambolic V, Woodgett JR (2006) Functional distinctions of protein kinase B/Akt isoforms defined by their influence on cell migration. Trends Cell Biol 16:461–466

    Article  CAS  PubMed  Google Scholar 

  26. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    Article  CAS  PubMed  Google Scholar 

  27. Choi JH, Adames NR, Chan TF et al (2000) TOR signaling regulates microtubule structure and function. Curr Biol 10:861–864

    Article  CAS  PubMed  Google Scholar 

  28. Jiang X, Yeung RS (2006) Regulation of microtubule-dependent protein transport by the TSC2/mammalian target of rapamycin pathway. Cancer Res 66:5258–5269

    Article  CAS  PubMed  Google Scholar 

  29. Berven LA, Willard FS, Crouch MF (2004) Role of the p70(S6K) pathway in regulating the actin cytoskeleton and cell migration. Exp Cell Res 296:183–195

    Article  CAS  PubMed  Google Scholar 

  30. Liu L, Chen L, Chung J, Huang S (2008) Rapamycin inhibits F-actin reorganization and phosphorylation of focal adhesion proteins. Oncogene 27:4998–5010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murooka TT, Rahbar R, Platanias LC, Fish EN (2008) CCL5-mediated T-cell chemotaxis involves the initiation of mRNA translation through mTOR/4E-BP1. Blood 111:4892–4901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cunningham JT, Rodgers JT, Arlow DH et al (2007) mTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex. Nature 450:736–740

    Article  CAS  PubMed  Google Scholar 

  33. Risson V, Mazelin L, Roceri M et al (2009) Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. J Cell Biol 187:859–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ramanathan A, Schreiber SL (2009) Direct control of mitochondrial function by mTOR. Proc Natl Acad Sci U S A 106:22229–22232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gilkerson RW, De Vries RL, Lebot P et al (2012) Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition. Hum Mol Genet 21:978–990

    Article  CAS  PubMed  Google Scholar 

  36. Edinger AL, Thompson CB (2002) Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell 13:2276–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785

    Article  CAS  PubMed  Google Scholar 

  38. Gwinn DM, Shackelford DB, Egan DF et al (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang J, Manning BD (2008) The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 412:179–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van Es S, Wessels D, Soll DR et al (2001) Tortoise, a novel mitochondrial protein, is required for directional responses of Dictyostelium in chemotactic gradients. J Cell Biol 152:621–632

    Article  PubMed  PubMed Central  Google Scholar 

  41. Torija P, Vicente JJ, Rodrigues TB et al (2006) Functional genomics in Dictyostelium: MidA, a new conserved protein, is required for mitochondrial function and development. J Cell Sci 119:1154–1164

    Article  CAS  PubMed  Google Scholar 

  42. Wilczynska Z, Barth C, Fisher PR (1997) Mitochondrial mutations impair signal transduction in Dictyostelium discoideum slugs. Biochem Biophys Res Commun 234:39–43

    Article  CAS  PubMed  Google Scholar 

  43. Kotsifas M, Barth C, de Lozanne A et al (2002) Chaperonin 60 and mitochondrial disease in Dictyostelium. J Muscle Res Cell Motil 23:839–852

    Article  CAS  PubMed  Google Scholar 

  44. Bokko PB, Francione L, Bandala-Sanchez E et al (2007) Diverse cytopathologies in mitochondrial disease are caused by AMP-activated protein kinase signaling. Mol Biol Cell 18:1874–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miró O, Casademont J, Grau JM et al (1998) Histological and biochemical assessment of mitochondrial function in dermatomyositis. Br J Rheumatol 37:1047–1053

    Article  PubMed  Google Scholar 

  46. Hiona A, Sanz A, Kujoth GC et al (2010) Mitochondrial DNA mutations induce mitochondrial dysfunction, apoptosis and sarcopenia in skeletal muscle of mitochondrial DNA mutator mice. PLoS One 5:e11468

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. I Kinetics of oxygen utilization. J Biol Chem 217:383–393

    CAS  PubMed  Google Scholar 

  48. Watanabe M, Houten SM, Mataki C et al (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439:484–489

    Article  CAS  PubMed  Google Scholar 

  49. Wang X, Moraes CT (2011) Increases in mitochondrial biogenesis impair carcinogenesis at multiple levels. Mol Oncol 5:399–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Choi SW, Gerencser AA, Nicholls DG (2009) Bioenergetic analysis of isolated cerebrocortical nerve terminals on a microgram scale: spare respiratory capacity and stochastic mitochondrial failure. J Neurochem 109:1179–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kimura K, Kuwayama H, Amagai A, Maeda Y (2010) Developmental significance of cyanide-resistant respiration under stressed conditions: experiments in Dictyostelium cells. Dev Growth Differ 52:645–656

    Article  CAS  PubMed  Google Scholar 

  52. Seahorse Bioscience (2014) XFe Wave user guide. Retrieved 5 May 2014 from http://www.seahorsebio.com/resources/pdfs/user-guide-xfe-wave.pdf

Download references

Acknowledgements

S. Lay and O. Sanislav contributed equally to this work, which was supported by the Australian Research Council Discovery Project grant DP140104276.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Fisher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lay, S., Sanislav, O., Annesley, S.J., Fisher, P.R. (2016). Mitochondrial Stress Tests Using Seahorse Respirometry on Intact Dictyostelium discoideum Cells. In: Jin, T., Hereld, D. (eds) Chemotaxis. Methods in Molecular Biology, vol 1407. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3480-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3480-5_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3478-2

  • Online ISBN: 978-1-4939-3480-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics