Skip to main content

Use of Resonance Energy Transfer Techniques for In Vivo Detection of Chemokine Receptor Oligomerization

  • Protocol
  • First Online:
Chemotaxis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1407))

Abstract

Since the first reports on chemokine function, much information has been generated on the implications of these molecules in numerous physiological and pathological processes, as well as on the signaling events activated through their binding to receptors. As is the case for other G protein-coupled receptors, chemokine receptors are not isolated entities that are activated following ligand binding; rather, they are found as dimers and/or higher order oligomers at the cell surface, even in the absence of ligands. These complexes form platforms that can be modified by receptor expression and ligand levels, indicating that they are dynamic structures. The analysis of the conformations adopted by these receptors at the membrane and their dynamics is thus crucial for a complete understanding of the function of the chemokines. We focus here on the methodology insights of new techniques, such as those based on resonance energy transfer for the analysis of chemokine receptor conformations in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffith JW, Sokol CL, Luster AD (2014) Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 32:659–702

    Article  CAS  PubMed  Google Scholar 

  2. Bachelerie F, Ben-Baruch A, Burkhardt AM et al (2013) International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 66:1–79

    Article  PubMed  Google Scholar 

  3. Baggiolini M (1998) Chemokines and leukocyte traffic. Nature 392:565–568

    Article  CAS  PubMed  Google Scholar 

  4. Rossi D, Zlotnik A (2000) The biology of chemokines and their receptors. Annu Rev Immunol 18:217–242

    Article  CAS  PubMed  Google Scholar 

  5. Mackay CR (2001) Chemokines: immunology’s high impact factors. Nat Immunol 2:95–101

    Article  CAS  PubMed  Google Scholar 

  6. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4:540–550

    Article  CAS  PubMed  Google Scholar 

  7. Baggiolini M, Dahinden CA (1994) CC chemokines in allergic inflammation. Immunol Today 15:127–133

    Article  CAS  PubMed  Google Scholar 

  8. Belperio JA, Keane MP, Arenberg DA et al (2000) CXC chemokines in angiogenesis. J Leukoc Biol 68:1–8

    CAS  PubMed  Google Scholar 

  9. Gerard C, Rollins BJ (2001) Chemokines and disease. Nat Immunol 2:108–115

    Article  CAS  PubMed  Google Scholar 

  10. Godessart N, Kunkel SL (2001) Chemokines in autoimmune disease. Curr Opin Immunol 13:670–675

    Article  CAS  PubMed  Google Scholar 

  11. Proudfoot AE (2002) Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol 2:106–115

    Article  CAS  PubMed  Google Scholar 

  12. Proudfoot AE, Handel TM, Johnson Z et al (2003) Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci U S A 100:1885–1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jansma A, Handel TM, Hamel DJ (2009) Chapter 2. Homo- and hetero-oligomerization of chemokines. Methods Enzymol 461:31–50

    Article  CAS  PubMed  Google Scholar 

  14. Hamel DJ, Sielaff I, Proudfoot AE, Handel TM (2009) Chapter 4. Interactions of chemokines with glycosaminoglycans. Methods Enzymol 461:71–102

    Article  CAS  PubMed  Google Scholar 

  15. Salanga CL, Handel TM (2011) Chemokine oligomerization and interactions with receptors and glycosaminoglycans: the role of structural dynamics in function. Exp Cell Res 317:590–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alcami A (2003) Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol 3:36–50

    Article  CAS  PubMed  Google Scholar 

  17. Seet BT, McFadden G (2002) Viral chemokine-binding proteins. J Leukoc Biol 72:24–34

    CAS  PubMed  Google Scholar 

  18. Murphy PM (2001) Viral exploitation and subversion of the immune system through chemokine mimicry. Nat Immunol 2:116–122

    Article  CAS  PubMed  Google Scholar 

  19. De Paula VS, Gomes NS, Lima LG et al (2013) Structural basis for the interaction of human β-defensin 6 and its putative chemokine receptor CCR2 and breast cancer microvesicles. J Mol Biol 425:4479–4495

    Article  PubMed  Google Scholar 

  20. Chabre M, Deterre P, Antonny B (2009) The apparent cooperativity of some GPCRs does not necessarily imply dimerization. Trends Pharmacol Sci 30:182–187

    Article  CAS  PubMed  Google Scholar 

  21. Hernanz-Falcón P, Rodríguez-Frade JM, Serrano A et al (2004) Identification of amino acid residues crucial for chemokine receptor dimerization. Nat Immunol 5:216–223

    Article  PubMed  Google Scholar 

  22. Rodríguez-Frade JM, Mellado M, Martínez-A C (2001) Chemokine receptor dimerization: two are better than one. Trends Immunol 22:612–617

    Article  PubMed  Google Scholar 

  23. Rodríguez-Frade JM, Vila-Coro AJ, de Ana AM et al (1999) The chemokine monocyte chemoattractant protein-1 induces functional responses through dimerization of its receptor CCR2. Proc Natl Acad Sci U S A 96:3628–3633

    Article  PubMed  PubMed Central  Google Scholar 

  24. Thelen M, Muñoz LM, Rodríguez-Frade JM, Mellado M (2010) Chemokine receptor oligomerization: functional considerations. Curr Opin Pharmacol 10:38–43

    Article  CAS  PubMed  Google Scholar 

  25. Wu B, Chien EY, Mol CD et al (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barroso R, Martínez Muñoz L, Barrondo S et al (2012) EBI2 regulates CXCL13-mediated responses by heterodimerization with CXCR5. FASEB J 26:4841–4854

    Article  CAS  PubMed  Google Scholar 

  27. Pello OM, Martínez-Muñoz L, Parrillas V et al (2008) Ligand stabilization of CXCR4/delta-opioid receptor heterodimers reveals a mechanism for immune response regulation. Eur J Immunol 38:537–549

    Article  CAS  PubMed  Google Scholar 

  28. Martínez-Muñoz L, Barroso R, Dyrhaug SY et al (2014) CCR5/CD4/CXCR4 oligomerization prevents HIV-1 gp120IIIB binding to the cell surface. Proc Natl Acad Sci U S A 111:E1960–E1969

    Article  PubMed  PubMed Central  Google Scholar 

  29. Iiizumi M, Bandyopadhyay S, Watabe K (2007) Interaction of Duffy antigen receptor for chemokines and KAI1: a critical step in metastasis suppression. Cancer Res 67:1411–1414

    Article  CAS  PubMed  Google Scholar 

  30. Kumar A, Humphreys TD, Kremer KN et al (2006) CXCR4 physically associates with the T cell receptor to signal in T cells. Immunity 25:213–224

    Article  CAS  PubMed  Google Scholar 

  31. Herrera C, Morimoto C, Blanco J et al (2001) Comodulation of CXCR4 and CD26 in human lymphocytes. J Biol Chem 276:19532–19539

    Article  CAS  PubMed  Google Scholar 

  32. Yoshida T, Ebina H, Koyanagi Y (2009) N-linked glycan-dependent interaction of CD63 with CXCR4 at the Golgi apparatus induces downregulation of CXCR4. Microbiol Immunol 53:629–635

    Article  CAS  PubMed  Google Scholar 

  33. Mellado M, Rodríguez-Frade JM, Vila-Coro AJ et al (2001) Chemokine receptor homo- or heterodimerization activates distinct signaling pathways. EMBO J 20:2497–2507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rozenfeld R, Devi LA (2010) Receptor heteromerization and drug discovery. Trends Pharmacol Sci 31:124–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mellado M, Rodríguez-Frade JM, Vila-Coro AJ et al (1999) Chemokine control of HIV-1 infection. Nature 400:723–724

    Article  CAS  PubMed  Google Scholar 

  36. Molon B, Gri G, Bettella M et al (2005) T cell costimulation by chemokine receptors. Nat Immunol 6:465–471

    Article  CAS  PubMed  Google Scholar 

  37. Chen C, Li J, Bot G et al (2004) Heterodimerization and cross-desensitization between the mu-opioid receptor and the chemokine CCR5 receptor. Eur J Pharmacol 483:175–186

    Article  CAS  PubMed  Google Scholar 

  38. Szabo I, Wetzel MA, Zhang N et al (2003) Selective inactivation of CCR5 and decreased infectivity of R5 HIV-1 strains mediated by opioid-induced heterologous desensitization. J Leukoc Biol 74:1074–1082

    Article  CAS  PubMed  Google Scholar 

  39. Rodríguez-Frade JM, Vila-Coro AJ, Martín A et al (1999) Similarities and differences in RANTES- and (AOP)-RANTES-triggered signals: implications for chemotaxis. J Cell Biol 144:755–765

    Article  PubMed  PubMed Central  Google Scholar 

  40. Percherancier Y, Berchiche YA, Slight I et al (2005) Bioluminescence resonance energy transfer reveals ligand-induced conformational changes in CXCR4 homo- and heterodimers. J Biol Chem 280:9895–9903

    Article  CAS  PubMed  Google Scholar 

  41. Wilson S, Wilkinson G, Milligan G (2005) The CXCR1 and CXCR2 receptors form constitutive homo- and heterodimers selectively and with equal apparent affinities. J Biol Chem 280:28663–28674

    Article  CAS  PubMed  Google Scholar 

  42. Harrison C, van der Graaf PH (2006) Current methods used to investigate G protein coupled receptor oligomerisation. J Pharmacol Toxicol Methods 54:26–35

    Article  CAS  PubMed  Google Scholar 

  43. Pfleger KD, Eidne KA (2006) Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods 3:165–174

    Article  CAS  PubMed  Google Scholar 

  44. Cardullo RA (2007) Theoretical principles and practical considerations for fluorescence resonance energy transfer microscopy. Methods Cell Biol 81:479–494

    Article  CAS  PubMed  Google Scholar 

  45. Boute N, Jockers R, Issad T (2002) The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol Sci 23:351–354

    Article  CAS  PubMed  Google Scholar 

  46. Coulon V, Audet M, Homburger V et al (2008) Subcellular imaging of dynamic protein interactions by bioluminescence resonance energy transfer. Biophys J 94:1001–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pfleger KD, Seeber RM, Eidne KA (2006) Bioluminescence resonance energy transfer (BRET) for the real-time detection of protein-protein interactions. Nat Protoc 1:337–345

    Article  CAS  PubMed  Google Scholar 

  48. El-Asmar L, Springael JY, Ballet S et al (2005) Evidence for negative binding cooperativity within CCR5-CCR2b heterodimers. Mol Pharmacol 67:460–469

    Article  CAS  PubMed  Google Scholar 

  49. Marullo S, Bouvier M (2007) Resonance energy transfer approaches in molecular pharmacology and beyond. Trends Pharmacol Sci 28:362–365

    Article  CAS  PubMed  Google Scholar 

  50. Dickinson ME, Bearman G, Tille S et al (2001) Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. Biotechniques 31:1272, 1274–1276, 1278

    Google Scholar 

  51. Zimmermann T, Rietdorf J, Girod A et al (2002) Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS Lett 531:245–249

    Article  CAS  PubMed  Google Scholar 

  52. Mercier JF, Salahpour A, Angers S et al (2002) Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J Biol Chem 277:44925–44931

    Article  CAS  PubMed  Google Scholar 

  53. Fuxe K, Ferré S, Canals M et al (2005) Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function. J Mol Neurosci 26:209–220

    Article  CAS  PubMed  Google Scholar 

  54. Hu CD, Chinenov Y, Kerppola TK (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9:789–798

    Article  CAS  PubMed  Google Scholar 

  55. Hu CD, Kerppola TK (2003) Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21:539–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kerppola TK (2006) Visualization of molecular interactions by fluorescence complementation. Nat Rev Mol Cell Biol 7:449–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Baíllo A, Martínez-Muñoz L, Mellado M (2013) Homogeneity tests for Michaelis-Menten curves with application to fluorescence resonance energy transfer data. J Biol Syst 21:1350017

    Article  Google Scholar 

  58. Levoye A, Balabanian K, Baleux F et al (2009) CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood 113:6085–6093

    Article  CAS  PubMed  Google Scholar 

  59. Martínez Muñoz L, Lucas P, Navarro G et al (2009) Dynamic regulation of CXCR1 and CXCR2 homo- and heterodimers. J Immunol 183:7337–7346

    Article  PubMed  Google Scholar 

  60. Motulsky H, Christopoulos A (2004) Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting. Oxford University Press, New York

    Google Scholar 

  61. Grinberg AV, Hu CD, Kerppola TK (2004) Visualization of Myc/Max/Mad family dimers and the competition for dimerization in living cells. Mol Cell Biol 24:4294–4308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We specially thank the present and former members of the DIO chemokine group who contributed to some of the work described in this review. We also thank C. Bastos and C. Mark for secretarial support and editorial assistance, respectively. This work was partially supported by grants from the Spanish Ministry of Economy and Competitiveness (SAF-2011-27270), the RETICS Program (RD 12/0009/009 RIER) and the Madrid regional government (S2010/BMD-2350; RAPHYME).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Mellado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Martínez-Muñoz, L., Rodríguez-Frade, J.M., Mellado, M. (2016). Use of Resonance Energy Transfer Techniques for In Vivo Detection of Chemokine Receptor Oligomerization. In: Jin, T., Hereld, D. (eds) Chemotaxis. Methods in Molecular Biology, vol 1407. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3480-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3480-5_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3478-2

  • Online ISBN: 978-1-4939-3480-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics