Skip to main content

Visualization of Actin Assembly and Filament Turnover by In Vitro Multicolor TIRF Microscopy

  • Protocol
  • First Online:
Chemotaxis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1407))

Abstract

In response to chemotactic signals, motile cells develop a single protruding front to persistently migrate in direction of the chemotactic gradient. The highly dynamic reorganization of the actin cytoskeleton is an essential part during this process and requires the precise interplay of various actin filament assembly factors and actin-binding proteins (ABPs). Although many ABPs have been implicated in cell migration, as yet only a few of them have been well characterized concerning their specific functions during actin network assembly and disassembly. In this chapter, we describe a versatile method that allows the direct visualization of the assembly of single actin filaments and higher structures in real time by in vitro total internal reflection fluorescence microscopy (TIRF-M) using purified and fluorescently labeled actin and ABPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J (2014) Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev 94:235–263

    Article  CAS  PubMed  Google Scholar 

  2. Faix J, Steinmetz M, Boves H et al (1996) Cortexillins, major determinants of cell shape and size, are actin-bundling proteins with a parallel coiled-coil tail. Cell 86:631–642

    Article  CAS  PubMed  Google Scholar 

  3. Kondo H, Ishiwata S (1976) Uni-directional growth of F-actin. J Biochem 79:159–171

    CAS  PubMed  Google Scholar 

  4. Pollard TD (1986) Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J Cell Biol 103:2747–2754

    Article  CAS  PubMed  Google Scholar 

  5. Kouyama T, Mihashi K (1981) Fluorimetry study of N-(1-pyrenyl)iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. Eur J Biochem 114:33–38

    Article  CAS  PubMed  Google Scholar 

  6. Amann KJ, Pollard TD (2001) Direct real-time observation of actin filament branching mediated by Arp2/3 complex using total internal reflection fluorescence microscopy. Proc Natl Acad Sci U S A 98:15009–15013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kovar DR, Harris ES, Mahaffy R et al (2006) Control of the assembly of ATP- and ADP-actin by formins and profilin. Cell 124:423–435

    Article  CAS  PubMed  Google Scholar 

  8. Breitsprecher D, Kiesewetter AK, Linkner J et al (2008) Clustering of VASP actively drives processive, WH2 domain-mediated actin filament elongation. EMBO J 27:2943–2954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Breitsprecher D, Kiesewetter AK, Linkner J et al (2011) Molecular mechanism of Ena/VASP-mediated actin-filament elongation. EMBO J 30:456–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Breitsprecher D, Koestler SA, Chizhov I et al (2011) Cofilin cooperates with fascin to disassemble filopodial actin filaments. J Cell Sci 124:3305–3318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smith BA, Padrick SB, Doolittle LK et al (2013) Three-color single molecule imaging shows WASP detachment from Arp2/3 complex triggers actin filament branch formation. Elife 2:e01008

    PubMed  PubMed Central  Google Scholar 

  12. Breitsprecher D, Jaiswal R, Bombardier JP et al (2012) Rocket launcher mechanism of collaborative actin assembly defined by single-molecule imaging. Science 336:1164–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bilancia CG, Winkelman JD, Tsygankov D et al (2014) Enabled negatively regulates diaphanous-driven actin dynamics in vitro and in vivo. Dev Cell 28:394–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Axelrod D (1981) Cell-substrate contacts illuminated by total internal reflection fluorescence. J Cell Biol 89:141–145

    Article  CAS  PubMed  Google Scholar 

  15. Axelrod D (2001) Total internal reflection fluorescence microscopy in cell biology. Traffic 2:764–774

    Article  CAS  PubMed  Google Scholar 

  16. Axelrod D (2013) Evanescent excitation and emission in fluorescence microscopy. Biophys J 104:1401–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuhn JR, Pollard TD (2005) Real-time measurements of actin filament polymerization by total internal reflection fluorescence microscopy. Biophys J 88:1387–1402

    Article  CAS  PubMed  Google Scholar 

  18. McCullough BR, Blanchoin L, Martiel JL, De la Cruz EM (2008) Cofilin increases the bending flexibility of actin filaments: implications for severing and cell mechanics. J Mol Biol 381:550–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Suarez C, Roland J, Boujemaa-Paterski R et al (2011) Cofilin tunes the nucleotide state of actin filaments and severs at bare and decorated segment boundaries. Curr Biol 21:862–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rottner K, Behrendt B, Small JV, Wehland J (1999) VASP dynamics during lamellipodia protrusion. Nat Cell Biol 1:321–322

    Article  CAS  PubMed  Google Scholar 

  21. Disanza A, Bisi S, Winterhoff M et al (2013) CDC42 switches IRSp53 from inhibition of actin growth to elongation by clustering of VASP. EMBO J 32:2735–2750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Keppler A, Gendreizig S, Gronemeyer T et al (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89

    Article  CAS  PubMed  Google Scholar 

  23. Winterhoff M, Junemann A, Nordholz B et al (2014) The Diaphanous-related formin dDia1 is required for highly directional phototaxis and formation of properly sized fruiting bodies in Dictyostelium. Eur J Cell Biol 93:212–224

    Article  CAS  PubMed  Google Scholar 

  24. Block J, Breitsprecher D, Kühn S et al (2012) FMNL2 drives actin-based protrusion and migration downstream of Cdc42. Curr Biol 22:1005–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Isambert H, Venier P, Maggs AC et al (1995) Flexibility of actin filaments derived from thermal fluctuations. Effect of bound nucleotide, phalloidin, and muscle regulatory proteins. J Biol Chem 270:11437–11444

    Article  CAS  PubMed  Google Scholar 

  26. Fujiwara I, Vavylonis D, Pollard TD (2007) Polymerization kinetics of ADP- and ADP-Pi-actin determined by fluorescence microscopy. Proc Natl Acad Sci U S A 104:8827–8832

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schäfer P, van de Linde S, Lehmann J et al (2013) Methylene blue- and thiol-based oxygen depletion for super-resolution imaging. Anal Chem 85:3393–3400

    Article  PubMed  Google Scholar 

  28. Cordes T, Vogelsang J, Tinnefeld P (2009) On the mechanism of Trolox as antiblinking and antibleaching reagent. J Am Chem Soc 131:5018–5019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) by grants to J.F (FA-330/9-1 and FA-330/10-1). We additionally thank Laurent Blanchoin for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Faix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Winterhoff, M., Brühmann, S., Franke, C., Breitsprecher, D., Faix, J. (2016). Visualization of Actin Assembly and Filament Turnover by In Vitro Multicolor TIRF Microscopy. In: Jin, T., Hereld, D. (eds) Chemotaxis. Methods in Molecular Biology, vol 1407. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3480-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3480-5_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3478-2

  • Online ISBN: 978-1-4939-3480-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics