Skip to main content

Imaging Matrix Metalloproteinase Activity Implicated in Breast Cancer Progression

  • Protocol
  • First Online:
Breast Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1406))

Abstract

Proteolysis has been cited as an important contributor to cancer initiation and progression. One can take advantage of tumor-associated proteases to selectively deliver imaging agents. Protease-activated imaging systems have been developed using substrates designed for hydrolysis by members of the matrix metalloproteinase (MMP) family. We presently describe approaches by which one can optically image matrix metalloproteinase activity implicated in breast cancer progression, with consideration of selective versus broad protease probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Deryugina EI, Quigley JP (2010) Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrasting, overlapping and compensatory functions. Biochim Biophys Acta 1803:103–120

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278:16–27

    Article  PubMed  CAS  Google Scholar 

  4. Rha SY, Kim JH, Roh JK, Lee KS, Min JS, Kim BS, Chung HC (1997) Sequential production and activation of matrix metalloproteinase-9 (MMP-9) with breast cancer progression. Breast Cancer Res Treat 43:175–181

    Article  PubMed  CAS  Google Scholar 

  5. Vihinen P, Ala-aho R, Kahari V-M (2005) Matrix metalloproteinases as therapeutic targets in cancer. Curr Cancer Drug Targets 5:203–220

    Article  PubMed  CAS  Google Scholar 

  6. Somiari SB, Somiari RI, Heckman CM, Olsen CH, Jordan RM, Russell SJ, Shriver CD (2006) Circulating MMP2 and MMP9 in breast cancer - potential role in classification of patients into low risk, high risk, benign disease and breast cancer categories. Int J Cancer 119:1403–1411

    Article  PubMed  CAS  Google Scholar 

  7. McGowan PM, Duffy MJ (2008) Matrix metalloproteinase expression and outcome in patients with breast cancer: analysis of a published database. Ann Oncol 19:1566–1572

    Article  PubMed  CAS  Google Scholar 

  8. Köhrmann A, Kammerer U, Kapp M, Dietl J, Anacker J (2009) Expression of matrix metalloproteinases (MMPs) in primary human breast cancer and breast cancer cell lines: new findings and review of the literature. BMC Cancer 9:188

    Article  PubMed  PubMed Central  Google Scholar 

  9. Figueira RCS, Gomes LR, Neto JS, Silva FC, Silva IDCG, Sodayar MC (2009) Correlation between MMPs and their inhibitors in breast cancer tumor tissue specimens and in cell lines with different metastatic potential. BMC Cancer 9:20

    Article  PubMed  PubMed Central  Google Scholar 

  10. Eck SM, Hoopes PJ, Petrella BL, Coon CI, Brinckerhoff CE (2009) Matrix metalloproteinase-1 promotes breast cancer angiogenesis and osteolysis in a novel in vivo model. Breast Cancer Res Treat 116:79

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Wyatt CA, Geoghegan JC, Brinckerhoff CE (2005) Short hairpin RNA-mediated inhibition of matrix metalloproteinase-1 in MDA-231 cells: effects on matrix destruction and tumor growth. Cancer Res 65:11101–11108

    Article  PubMed  CAS  Google Scholar 

  12. Liu H, Kato Y, Erzinger SA, Kiriakova GM, Qian Y, Palmieri D, Steeg PS, Price JE (2012) The role of MMP-1 in breast cancer growth and metastasis to the brain in a xenograft model. BMC Cancer 12:583

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Ohshiba T, Miyaura C, Inada M, Ito A (2003) Role of RANKL-induced osteoclast formation and MMP-dependent matrix degradation in bone destruction by breast cancer metastasis. Br J Cancer 88:1318–1326

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Decock J, Thirkettle S, Wagstaff L, Edwards DR (2011) Matrix metalloproteinases: protective roles in cancer. J Cell Mol Med 15:1254–1265

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Martin MD, Matrisian LM (2007) The other side of MMPs: protective roles in tumor progression. Cancer Metastasis Rev 26:717–724

    Article  PubMed  CAS  Google Scholar 

  16. Dufour A, Overall CM (2013) Missing the target: matrix metalloproteinase antitargets in inflammation and cancer. Trends Pharm Sci 34:233–242

    Article  PubMed  CAS  Google Scholar 

  17. Morrison C, Mancini S, Cipollone J, Kappelhoff R, Roskelley C, Overall C (2011) Microarray and proteomic analysis of breast cancer cell and osteoblast co-cultures: role of osteoblast matrix metalloproteinase (MMP)-13 in bone metastasis. J Biol Chem 286:34271–34285

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Zarrabi K, Dufour A, Li J, Kuscu C, Pulkoski-Gross A, Zhi J, Hu Y, Sampson NS, Zucker S, Cao J (2011) Inhibition of matrix metalloproteinase-14 (MMP-14)-mediated cancer cell migration. J Biol Chem 286:33167–33177

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Fields GB (2008) Protease-activated delivery and imaging systems. In: Edwards D, Hoyer-Hansen G, Blasi F, Sloane B (eds) The cancer degradome – proteases in cancer biology. Springer, New York, NY, pp 827–851

    Chapter  Google Scholar 

  20. Knapinska A, Fields GB (2012) Chemical biology for understanding matrix metalloproteinase function. ChemBioChem 13:2002–2020

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Li C, Wang W, Wu Q, Ke S, Houston J, Sevick-Muraca E, Dong L, Chow D, Charnsangavej C, Gelovani JG (2006) Dual optical and nuclear imaging in human melanoma xenografts using a single targeted imaging probe. Nucl Med Biol 33:349–358

    Article  PubMed  CAS  Google Scholar 

  22. Piao D, Xie H, Zhang W, Krasinski JS, Zhang G, Dehghani H, Pogue BW (2006) Endoscopic, rapid near-infrared optical tomography. Opt Lett 31:2876–2878

    Article  PubMed  Google Scholar 

  23. Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2:123–131

    Article  PubMed  CAS  Google Scholar 

  24. Weissleder R (2002) Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer 2:11–18

    Article  PubMed  CAS  Google Scholar 

  25. Tung C-H (2004) Fluorescent peptide probes for in vivo diagnostic imaging. Biopolymers 76:391–403

    Article  PubMed  CAS  Google Scholar 

  26. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333

    Article  PubMed  CAS  Google Scholar 

  27. Bremer C, Ntzachristos V, Weisslender R (2003) Optical-based molecular imaging: contrast agents and potential medical applications. Eur Radiol 13:231–243

    PubMed  Google Scholar 

  28. Bremer C, Bredow S, Mahmood U, Weissleder R, Tung CH (2001) Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model. Radiology 221:523–529

    Article  PubMed  CAS  Google Scholar 

  29. Bremer C, Tung C-H, Weissleder R (2001) In vivo molecular target assessment of matrix metalloproteinase activity. Nat Med 7:743–748

    Article  PubMed  CAS  Google Scholar 

  30. Clapper ML, Hensley HH, Chang WC, Devarajan K, Nguyen MT, Cooper HS (2011) Detection of colorectal adenomas using a bioactivatable probe specific for matrix metalloproteinase activity. Neoplasia 13:685–691

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Xie BW, Mol IM, Keereweer S, van Beek ER, Que I, Snoeks TJ, Chan A, Kaijzel EL, Löwik CW (2012) Dual-wavelength imaging of tumor progression by activatable and targeting near-infrared fluorescent probes in a bioluminescent breast cancer model. PLoS One 7:e31875

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Barber PA, Rushforth D, Agrawal S, Tuor UI (2012) Infrared optical imaging of matrix metalloproteinases (MMPs) up regulation following ischemia reperfusion is ameliorated by hypothermia. BMC Neurosci 13:76

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Lee S, Park K, Lee S-Y, Ryu JH, Park JW, Ahn HJ, Kwon IC, Youn I-C, Kim K, Choi K (2008) Dark quenched matrix metalloproteinase fluorogenic probe for imaging osteoarthritis development in vivo. Bioconjug Chem 19:1743–1747

    Article  PubMed  CAS  Google Scholar 

  34. Ryu JH, Lee A, Na JH, Lee S, Ahn HJ, Park JW, Ahn CH, Kim BS, Kwon IC, Choi K, Youn I, Kim K (2011) Optimization of matrix metalloproteinase fluorogenic probes for osteoarthritis imaging. Amino Acids 41:1113–1122

    Article  PubMed  CAS  Google Scholar 

  35. Lim NH, Meinjohanns E, Meldal M, Bou-Gharios G, Nagase H (2014) In vivo imaging of MMP-13 activity in the murine destabilised medial meniscus surgical model of osteoarthritis. Osteoarthritis Cartilage 22:862–868

    Article  PubMed  CAS  Google Scholar 

  36. Lim NH, Meinjohanns E, Bou-Gharios G, Gompels LL, Nuti E, Rossello A, Devel L, Dive V, Meldal M, Nagase H (2014) In vivo imaging of matrix metalloproteinase 12 and matrix metalloproteinase 13 activities in the mouse model of collagen-induced arthritis. Arthritis Rheum 66:589–598

    Article  CAS  Google Scholar 

  37. Woodhead-Galloway J (1980) Collagen: the anatomy of a protein. Edward Arnold Limited, London, pp 10–19

    Google Scholar 

  38. Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Fields GB, Prockop DJ (1996) Perspectives on the synthesis and application of triple-helical, collagen-model peptides. Biopolymers 40:345–357

    Article  PubMed  CAS  Google Scholar 

  40. Fields GB (2010) Synthesis and biological applications of collagen-model triple-helical peptides. Org Biomol Chem 8:1237–1258

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Jenkins CL, Raines RT (2002) Insights on the conformational stability of collagen. Nat Prod Rep 19:49–59

    Article  PubMed  CAS  Google Scholar 

  42. Brodsky B, Shah NK (1995) The triple-helix motif in proteins. FASEB J 9:1537–1546

    PubMed  CAS  Google Scholar 

  43. Koide T (2005) Triple helical collagen-like peptides: engineering and applications in matrix biology. Connect Tissue Res 46:131–141

    Article  PubMed  CAS  Google Scholar 

  44. Koide T (2007) Designed triple-helical peptides as tools for collagen biochemistry and matrix engineering. Phil Trans R Soc B 362:1281–1291

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Brodsky B, Thiagarajan G, Madhan B, Kar K (2008) Triple-helical peptides: an approach to collagen conformation, stability, and self-association. Biopolymers 89:345–353

    Article  PubMed  CAS  Google Scholar 

  46. Lauer-Fields JL, Broder T, Sritharan T, Nagase H, Fields GB (2001) Kinetic analysis of matrix metalloproteinase triple-helicase activity using fluorogenic substrates. Biochemistry 40:5795–5803

    Article  PubMed  CAS  Google Scholar 

  47. Lauer-Fields JL, Kele P, Sui G, Nagase H, Leblanc RM, Fields GB (2003) Analysis of matrix metalloproteinase activity using triple-helical substrates incorporating fluorogenic L- or D-amino acids. Anal Biochem 321:105–115

    Article  PubMed  CAS  Google Scholar 

  48. Lauer-Fields JL, Sritharan T, Stack MS, Nagase H, Fields GB (2003) Selective hydrolysis of triple-helical substrates by matrix metalloproteinase-2 and -9. J Biol Chem 278:18140–18145

    Article  PubMed  CAS  Google Scholar 

  49. Minond D, Lauer-Fields JL, Nagase H, Fields GB (2004) Matrix metalloproteinase triple-helical peptidase activities are differentially regulated by substrate stability. Biochemistry 43:11474–11481

    Article  PubMed  CAS  Google Scholar 

  50. Minond D, Lauer-Fields JL, Cudic M, Overall CM, Pei D, Brew K, Visse R, Nagase H, Fields GB (2006) The roles of substrate thermal stability and P2 and P1′ subsite identity on matrix metalloproteinase triple-helical peptidase activity and collagen specificity. J Biol Chem 281:38302–38313

    Article  PubMed  CAS  Google Scholar 

  51. Minond D, Lauer-Fields JL, Cudic M, Overall CM, Pei D, Brew K, Moss ML, Fields GB (2007) Differentiation of secreted and membrane-type matrix metalloproteinase activities based on substitutions and interruptions of triple-helical sequences. Biochemistry 46:3724–3733

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Lauer-Fields JL, Chalmers MJ, Busby SA, Minond D, Griffin PR, Fields GB (2009) Identification of specific hemopexin-like domain residues that facilitate matrix metalloproteinase collagenolytic activity. J Biol Chem 284:24017–24024

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Bhaskaran R, Palmier MO, Lauer-Fields JL, Fields GB, Van Doren SR (2008) MMP-12 catalytic domain recognizes triple-helical peptide models of collagen V with exosites and high activity. J Biol Chem 283:21779–21788

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Lee H, Mason JC, Achilefu S (2006) Heptamethine cyanine dyes with a robust C-C bond at the central position of the chromophore. J Org Chem 71:7862–7865

    Article  PubMed  CAS  Google Scholar 

  55. Akers WJ, Xu B, Lee H, Sudlow GP, Fields GB, Achilefu S, Edwards WB (2012) Detection of MMP-2 and MMP-9 activity in vivo with a triple-helical peptide optical probe. Bioconjug Chem 23:656–663

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Zhang X, Bresee J, Fields GB, Edwards WB (2014) Near-infrared triple-helical peptide with quenched fluorophores for optical imaging of MMP-2 and MMP-9 proteolytic activity in vivo. Bioorg Med Chem Lett 24:3786–3790

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Achilefu S, Jimenez HN, Dorshow RB, Bugaj JE, Webb EG, Wilhelm RR, Rajagopalan R, Johler J, Erion JL (2002) Synthesis, in vitro receptor binding, and in vivo evaluation of fluorescein and carbocyanine peptide-based optical contrast agents. J Med Chem 45:2003–2015

    Article  PubMed  CAS  Google Scholar 

  58. Berezin MY, Guo K, Akers W, Livingston J, Solomon M, Lee H, Liang K, Agee A, Achilefu S (2011) Rational approach to select small peptide molecular probes labeled with fluorescent cyanine dyes for in vivo optical imaging. Biochemistry 50:2691–2700

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Zhang Z, Fan J, Cheney PP, Berezin MY, Edwards WB, Akers WJ, Shen D, Liang K, Culver JP, Achilefu S (2009) Activatable molecular systems using homologous near-infrared fluorescent probes for monitoring enzyme activities in vitro, in cellulo, and in vivo. Mol Pharm 6:416–427

    Article  PubMed  CAS  Google Scholar 

  60. Gonzalez LO, Pidal I, Junquera S, Corte MD, Vazquez J, Rodriguez JC, Lamelas ML, Merino AM, Garcia-Muniz JL, Vizoso FJ (2007) Overexpression of matrix metalloproteinases and their inhibitors in mononuclear inflammatory cells in breast cancer correlates with metastasis-relapse. Br J Cancer 97:957–963

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Zhang X, Bresee J, Cheney PP, Xu B, Bhowmick M, Cudic M, Fields GB, Edwards WB (2014) Evaluation of a triple-helical peptide with quenched fluorophores for optical imaging of MMP-2 and MMP-9 proteolytic activity. Molecules 19:8571–8588

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fischer R, Mader O, Jung G, Brock R (2003) Extending the applicability of carboxyfluorescein in solid-phase synthesis. Bioconjug Chem 14:653–660

    Article  PubMed  Google Scholar 

  63. Höfle G, Steglich W, Vorbrüggen H (1978) 4-Dialkylaminopyridines as highly active acylation catalysts. Angew Chem Int Ed Engl 17:569–583

    Article  Google Scholar 

  64. Xu S, Held I, Kempf B, Mayr H, Steglich W, Zipse H (2005) The DMAP-catalyzed acetylation of alcohols—a mechanistic study. Chemistry 11:4751–4757

    Article  PubMed  CAS  Google Scholar 

  65. Yang J, Zhang Z, Lin J, Lu J, Liu BF, Zeng S, Luo Q (2007) Detection of MMP activity in living cells by a genetically encoded surface-displayed FRET sensor. Biochim Biophys Acta 1773:400–407

    Article  PubMed  CAS  Google Scholar 

  66. Zhang Z, Yang J, Lu J, Lin J, Zeng S, Luo Q (2008) Fluorescence imaging to assess the matrix metalloproteinase activity and its inhibitor in vivo. J Biomed Opt 13:011006

    Article  PubMed  Google Scholar 

  67. Zhu L, Wang H, Wang L, Wang Y, Jiang K, Li C, Ma Q, Gao S, Wang L, Li W, Cai M, Wang H, Niu G, Lee S, Yang W, Fang X, Chen X (2011) High-affinity peptide against MT1-MMP for in vivo tumor imaging. J Control Release 150:248–255

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Zhu L, Zhang F, Ma Y, Liu G, Kim K, Fang X, Lee S, Chen X (2011) In vivo optical imaging of membrane-type matrix metalloproteinase (MT-MMP) activity. Mol Pharmaceut 8:2331–2338

    Article  CAS  Google Scholar 

  69. Hanaoka H, Mukai T, Habashita S, Asano D, Ogawa K, Kuroda Y, Akizawa H, Iida Y, Endo K, Saga T, Saji H (2007) Chemical design of a radiolabeled gelatinase inhibitor peptide for the imaging of gelatinase activity in tumors. Nucl Med Biol 34:503–510

    Article  PubMed  CAS  Google Scholar 

  70. Sprague JE, Li WP, Liang K, Achilefu S, Anderson CJ (2006) In vitro and in vivo investigation of matrix metalloproteinase expression in metastatic tumor models. Nucl Med Biol 33:227–237

    Article  PubMed  CAS  Google Scholar 

  71. Watkins GA, Jones EF, Shell MS, VanBrocklin HF, Pan M-H, Hanrahan SM, Feng JJ, He J, Sounni NE, Dill KA, Contag CH, Coussens LM, Franc BL (2009) Development of an optimized activatable MMP-14 targeted SPECT imaging probe. Bioorg Med Chem 17:653–659

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Temma T, Sano K, Kuge Y, Kamihashi J, Takai N, Ogawa Y, Saji H (2009) Development of a radiolabeled probe for detecting membrane type-1 matrix metalloproteinase on malignant tumors. Biol Pharm Bull 32:1272–1277

    Article  PubMed  CAS  Google Scholar 

  73. Ye Y, Bloch S, Achilefu S (2004) Polyvalent carbocyanine molecular beacons for molecular recognitions. J Am Chem Soc 126:7740–7741

    Article  PubMed  CAS  Google Scholar 

  74. Fields CG, Lovdahl CM, Miles AJ, Matthias-Hagen VL, Fields GB (1993) Solid-phase synthesis and stability of triple-helical peptides incorporating native collagen sequences. Biopolymers 33:1695–1707

    Article  PubMed  CAS  Google Scholar 

  75. Fields CG, Mickelson DJ, Drake SL, McCarthy JB, Fields GB (1993) Melanoma cell adhesion and spreading activities of a synthetic 124-residue triple-helical “mini-collagen”. J Biol Chem 268:14153–14160

    PubMed  CAS  Google Scholar 

  76. Grab B, Miles AJ, Furcht LT, Fields GB (1996) Promotion of fibroblast adhesion by triple-helical peptide models of type I collagen-derived sequences. J Biol Chem 271:12234–12240

    Article  PubMed  CAS  Google Scholar 

  77. Lauer-Fields JL, Tuzinski KA, Shimokawa K, Nagase H, Fields GB (2000) Hydrolysis of triple-helical collagen peptide models by matrix metalloproteinases. J Biol Chem 275:13282–13290

    Article  PubMed  CAS  Google Scholar 

  78. Lauer-Fields JL, Nagase H, Fields GB (2000) Use of Edman degradation sequence analysis and matrix-assisted laser desorption/ionization mass spectrometry in designing substrates for matrix metalloproteinases. J Chromatogr A 890:117–125

    Article  PubMed  CAS  Google Scholar 

  79. Malkar NB, Lauer-Fields JL, Borgia JA, Fields GB (2002) Modulation of triple-helical stability and subsequent melanoma cellular responses by single-site substitution of fluoroproline derivatives. Biochemistry 41:6054–6064

    Article  PubMed  CAS  Google Scholar 

  80. Yu Y-C, Tirrell M, Fields GB (1998) Minimal lipidation stabilizes protein-like molecular architecture. J Am Chem Soc 120:9979–9987

    Article  CAS  Google Scholar 

  81. Yu Y-C, Berndt P, Tirrell M, Fields GB (1996) Self-assembling amphiphiles for construction of protein molecular architecture. J Am Chem Soc 118:12515–12520

    Article  CAS  Google Scholar 

  82. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  PubMed  CAS  Google Scholar 

  83. Guy CA, Fields GB (1997) Trifluoroacetic acid cleavage and deprotection of resin-bound peptides following synthesis by Fmoc chemistry. Methods Enzymol 289:67–83

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The methods described in this chapter reflect the pioneering work of the laboratories of Drs. Ralph Weissleder and W. Barry Edwards. We gratefully acknowledge the National Institutes of Health (EB000289 and CA098799) and the Texas Higher Education STAR Award Program for support of our laboratory’s research on matrix metalloproteinases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregg B. Fields .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fields, G.B., Stawikowski, M.J. (2016). Imaging Matrix Metalloproteinase Activity Implicated in Breast Cancer Progression. In: Cao, J. (eds) Breast Cancer. Methods in Molecular Biology, vol 1406. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3444-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3444-7_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3442-3

  • Online ISBN: 978-1-4939-3444-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics