Skip to main content

Monitoring Phosphatidic Acid Signaling in Breast Cancer Cells Using Genetically Encoded Biosensors

  • Protocol
  • First Online:
Breast Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1406))

Abstract

Phospholipids are important signaling molecules that regulate cell proliferation, death, migration, and metabolism. Many phospholipid signaling cascades are altered in breast cancer. To understand the functions of phospholipid signaling molecules, genetically encoded phospholipid biosensors have been developed to monitor their spatiotemporal dynamics. Compared to other phospholipids, much less is known about the subcellular production and cellular functions of phosphatidic acid (PA), partially due to the lack of a specific and sensitive PA biosensor in the past. This chapter describes the use of a newly developed PA biosensor, PASS, in two applications: regular fluorescent microscopy and fluorescence lifetime imaging microscopy-Förster/fluorescence resonance energy transfer (FLIM-FRET). These protocols can be also used with other phospholipid biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443(7112):651–657

    Article  PubMed  Google Scholar 

  2. Maekawa M, Fairn GD (2014) Molecular probes to visualize the location, organization and dynamics of lipids. J Cell Sci 127(22):4801–4812

    Article  PubMed  Google Scholar 

  3. Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nat Rev Mol Cell Biol 9(2):162–176

    Article  PubMed  CAS  Google Scholar 

  4. Park JB, Lee CS, Jang JH, Ghim J, Kim YJ, You S, Hwang D, Suh PG, Ryu SH (2012) Phospholipase signalling networks in cancer. Nat Rev Cancer 12(11):782–792

    Article  PubMed  CAS  Google Scholar 

  5. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10(8):789–799

    Article  PubMed  CAS  Google Scholar 

  6. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rusten TE, Stenmark H (2006) Analyzing phosphoinositides and their interacting proteins. Nat Methods 3(4):251–258

    Article  PubMed  CAS  Google Scholar 

  8. Balla T, Varnai P (2002) Visualizing cellular phosphoinositide pools with GFP-fused protein-modules. Sci STKE 2002(125):pl3

    PubMed  Google Scholar 

  9. Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9(2):99–111

    Article  PubMed  CAS  Google Scholar 

  10. Zhang Y, Du G (2009) Phosphatidic acid signaling regulation of Ras superfamily of small guanosine triphosphatases. Biochim Biophys Acta 1791(9):850–855

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Peng X, Frohman MA (2012) Mammalian phospholipase D physiological and pathological roles. Acta Physiol (Oxf) 204(2):219–226

    Article  CAS  Google Scholar 

  12. Shulga YV, Topham MK, Epand RM (2011) Regulation and functions of diacylglycerol kinases. Chem Rev 111(10):6186–6208

    Article  PubMed  CAS  Google Scholar 

  13. Dominguez CL, Floyd DH, Xiao A, Mullins GR, Kefas BA, Xin W, Yacur MN, Abounader R, Lee JK, Wilson GM, Harris TE, Purow BW (2013) Diacylglycerol kinase alpha is a critical signaling node and novel therapeutic target in glioblastoma and other cancers. Cancer Discov 3(7):782–797

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Bruntz RC, Lindsley CW, Brown HA (2014) Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer. Pharmacol Rev 66(4):1033–1079

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Gomez-Cambronero J (2014) Phospholipase D in cell signaling: from a myriad of cell functions to cancer growth and metastasis. J Biol Chem 289(33):22557–22566

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Zhang F, Wang Z, Lu M, Yonekubo Y, Liang X, Zhang Y, Wu P, Zhou Y, Grinstein S, Hancock JF, Du G (2014) Temporal production of the signaling lipid phosphatidic acid by phospholipase D2 determines the output of extracellular signal-regulated kinase signaling in cancer cells. Mol Cell Biol 34(1):84–95

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Lasserre R, Guo XJ, Conchonaud F, Hamon Y, Hawchar O, Bernard AM, Soudja SM, Lenne PF, Rigneault H, Olive D, Bismuth G, Nunes JA, Payrastre B, Marguet D, He HT (2008) Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nat Chem Biol 4(9):538–547

    Article  PubMed  CAS  Google Scholar 

  18. Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11(10):688–699

    Article  PubMed  CAS  Google Scholar 

  19. Harding AS, Hancock JF (2008) Using plasma membrane nanoclusters to build better signaling circuits. Trends Cell Biol 18(8):364–371

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Ariotti N, Liang H, Xu Y, Zhang Y, Yonekubo Y, Inder K, Du G, Parton RG, Hancock JF, Plowman SJ (2010) Epidermal growth factor receptor activation remodels the plasma membrane lipid environment to induce nanocluster formation. Mol Cell Biol 30(15):3795–3804

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Zhou Y, Liang H, Rodkey T, Ariotti N, Parton RG, Hancock JF (2014) Signal integration by lipid-mediated spatial cross talk between Ras nanoclusters. Mol Cell Biol 34(5):862–876

    Article  PubMed  PubMed Central  Google Scholar 

  22. Levitt JA, Matthews DR, Ameer-Beg SM, Suhling K (2009) Fluorescence lifetime and polarization-resolved imaging in cell biology. Curr Opin Biotechnol 20(1):28–36

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant RP130425 from the Cancer Prevention and Research Institute of Texas (CPRIT) and a research grant R01HL119478 from the National Heart, Lung, and Blood Institute of the National Institutes of Health to GD, and a UTHealth Innovation for Cancer Prevention Research Training Program Predoctoral Fellowship grant RP140103 from the CPRIT to ML. The content is solely the responsibility of the authors and does not necessarily represent the official views of the CPRIT and National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangwei Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lu, M., Tay, L.W.R., He, J., Du, G. (2016). Monitoring Phosphatidic Acid Signaling in Breast Cancer Cells Using Genetically Encoded Biosensors. In: Cao, J. (eds) Breast Cancer. Methods in Molecular Biology, vol 1406. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3444-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3444-7_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3442-3

  • Online ISBN: 978-1-4939-3444-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics