Optogenetic Dissection of the Striatal Microcircuitry

  • Gilad SilberbergEmail author
  • Henrike Planert
Part of the Neuromethods book series (NM, volume 113)


The striatum is the principal input structure of the basal ganglia, comprised almost entirely of inhibitory neurons, which include projection neurons and a small yet diverse population of interneurons. Striatal afferents include glutamatergic inputs from the neocortex and thalamus, and massive dopaminergic input from the substantia nigra pars compacta. In order to better understand the operational roles of striatum, it is essential to have a good grasp of its microcircuitry, namely a detailed description of its neuron types and their synaptic connectivity. Traditionally, studying synaptic connectivity between identified neurons was performed using paired and multineuron intracellular recordings in brain slices. The recent introduction of optogenetic methods offers new experimental approaches for microcircuit analysis, one of which is the combination of whole-cell patch-clamp recordings and optogenetic activation of presynaptic neurons. In this chapter we present recent advances in our understanding of the striatal microcircuitry when studied with electrophysiological and optogenetic methods. We first introduce the different neuron types comprising the striatal microcircuitry and describe their basic interconnectivity as inferred from electrophysiological measurements. We then present a few recent studies performed primarily in striatal and corticostriatal slices, where the powerful combination of electrophysiology and optogenetics revised our understanding of striatal functional organization.

Key words

Optogenetics Channelrhodopsin Patch clamp Striatum Slice In vivo Striatal microcircuit Feedforward inhibition 


  1. 1.
    Kincaid AE, Zheng T, Wilson CJ (1998) Connectivity and convergence of single corticostriatal axons. J Neurosci 18(12):4722–4731PubMedGoogle Scholar
  2. 2.
    Joel D, Weiner I (2000) The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 96(3):451–474, doi: S0306-4522(99)00575-8 [pii]CrossRefPubMedGoogle Scholar
  3. 3.
    Calabresi P, Pisani A, Mercuri NB, Bernardi G (1996) The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia. Trends Neurosci 19(1):19–24, doi: 0166223696818625 [pii]CrossRefPubMedGoogle Scholar
  4. 4.
    Moss J, Bolam JP (2008) A dopaminergic axon lattice in the striatum and its relationship with cortical and thalamic terminals. J Neurosci 28(44):11221–11230. doi: 10.1523/JNEUROSCI.2780-08.2008, 28/44/11221 [pii]CrossRefPubMedGoogle Scholar
  5. 5.
    Gerfen CR (2004) Basal ganglia. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier Academic Press, San Diego, London, pp 455–508CrossRefGoogle Scholar
  6. 6.
    Wilson CJ, Groves PM (1981) Spontaneous firing patterns of identified spiny neurons in the rat neostriatum. Brain Res 220(1):67–80, doi: 0006-8993(81)90211-0 [pii]CrossRefPubMedGoogle Scholar
  7. 7.
    Berke JD, Okatan M, Skurski J, Eichenbaum HB (2004) Oscillatory entrainment of striatal neurons in freely moving rats. Neuron 43(6):883–896. doi: 10.1016/j.neuron.2004.08.035, S0896627304005628 [pii]CrossRefPubMedGoogle Scholar
  8. 8.
    Kawaguchi Y, Wilson C, Emson P (1990) Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J Neurosci 10(10):3421–3438PubMedGoogle Scholar
  9. 9.
    Nisenbaum ES, Xu ZC, Wilson CJ (1994) Contribution of a slowly inactivating potassium current to the transition to firing of neostriatal spiny projection neurons. J Neurophysiol 71(3):1174–1189PubMedGoogle Scholar
  10. 10.
    Nisenbaum ES, Wilson CJ (1995) Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons. J Neurosci 15(6):4449–4463PubMedGoogle Scholar
  11. 11.
    Nisenbaum ES, Wilson CJ, Foehring RC, Surmeier DJ (1996) Isolation and characterization of a persistent potassium current in neostriatal neurons. J Neurophysiol 76(2):1180–1194PubMedGoogle Scholar
  12. 12.
    Wilson C (1993) The generation of natural firing patterns in neostriatal neurons. Prog Brain Res 99:277–297CrossRefPubMedGoogle Scholar
  13. 13.
    Wilson C, Kawaguchi Y (1996) The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J Neurosci 16(7):2397–2410PubMedGoogle Scholar
  14. 14.
    Mahon S, Deniau JM, Charpier S (2001) Relationship between EEG potentials and intracellular activity of striatal and cortico-striatal neurons: an in vivo study under different anesthetics. Cereb Cortex 11(4):360–373CrossRefPubMedGoogle Scholar
  15. 15.
    Mahon S, Vautrelle N, Pezard L, Slaght S, Deniau J, Chouvet G, Charpier S (2006) Distinct patterns of striatal medium spiny neuron activity during the natural sleep-wake cycle. J Neurosci 26(48):12587–12595CrossRefPubMedGoogle Scholar
  16. 16.
    Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13(7):266–271CrossRefPubMedGoogle Scholar
  17. 17.
    DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13(7):281–285CrossRefPubMedGoogle Scholar
  18. 18.
    Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50(4):381–425, doi: S0301-0082(96)00042-1 [pii]CrossRefPubMedGoogle Scholar
  19. 19.
    Albin R, Young A, Penney J (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375CrossRefPubMedGoogle Scholar
  20. 20.
    Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250(4986):1429–1432CrossRefPubMedGoogle Scholar
  21. 21.
    Gong S, Zheng C, Doughty M, Losos K, Didkovsky N, Schambra U, Nowak N, Joyner A, Leblanc G, Hatten M, Heintz N (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425(6961):917–925CrossRefPubMedGoogle Scholar
  22. 22.
    Cepeda C, André V, Yamazaki I, Wu N, Kleiman-Weiner M, Levine M (2008) Differential electrophysiological properties of dopamine D1 and D2 receptor-containing striatal medium-sized spiny neurons. Eur J Neurosci 27(3):671–682CrossRefPubMedGoogle Scholar
  23. 23.
    Gertler T, Chan C, Surmeier D (2008) Dichotomous anatomical properties of adult striatal medium spiny neurons. J Neurosci 28(43):10814–10824CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Planert H, Berger TK, Silberberg G (2013) Membrane properties of striatal direct and indirect pathway neurons in mouse and rat slices and their modulation by dopamine. PLoS One 8(3):e57054. doi: 10.1371/journal.pone.0057054 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kreitzer A, Malenka R (2007) Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature 445(7128):643–647CrossRefPubMedGoogle Scholar
  26. 26.
    Aosaki T, Tsubokawa H, Ishida A, Watanabe K, Graybiel AM, Kimura M (1994) Responses of tonically active neurons in the primate's striatum undergo systematic changes during behavioral sensorimotor conditioning. J Neurosci 14(6):3969–3984PubMedGoogle Scholar
  27. 27.
    Bennett BD, Callaway JC, Wilson CJ (2000) Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons. J Neurosci 20(22):8493–8503, doi: 20/22/8493 [pii]PubMedGoogle Scholar
  28. 28.
    Oldenburg IA, Ding JB (2011) Cholinergic modulation of synaptic integration and dendritic excitability in the striatum. Curr Opin Neurobiol 21(3):425–432. doi: 10.1016/j.conb.2011.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Dautan D, Huerta-Ocampo I, Witten IB, Deisseroth K, Bolam JP, Gerdjikov T, Mena-Segovia J (2014) A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J Neurosci 34(13):4509–4518. doi: 10.1523/JNEUROSCI.5071-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Morris G, Arkadir D, Nevet A, Vaadia E, Bergman H (2004) Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons. Neuron 43(1):133–143. doi: 10.1016/j.neuron.2004.06.012 CrossRefPubMedGoogle Scholar
  31. 31.
    Kawaguchi Y (1993) Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J Neurosci 13(11):4908–4923PubMedGoogle Scholar
  32. 32.
    Freund TF (2003) Interneuron diversity series: rhythm and mood in perisomatic inhibition. Trends Neurosci 26(9):489–495. doi: 10.1016/S0166-2236(03)00227-3 CrossRefPubMedGoogle Scholar
  33. 33.
    Munoz-Manchado AB, Foldi C, Szydlowski S, Sjulson L, Farries M, Wilson C, Silberberg G, Hjerling-Leffler J (2014) Novel striatal GABAergic interneuron populations labeled in the 5HT3aEGFP mouse. Cereb Cortex. doi: 10.1093/cercor/bhu179 PubMedPubMedCentralGoogle Scholar
  34. 34.
    Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC (1995) Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci 18(12):527–535, doi: 0166-2236(95)98374-8 [pii]CrossRefPubMedGoogle Scholar
  35. 35.
    Ibáñez-Sandoval O, Tecuapetla F, Unal B, Shah F, KoÛs T, Tepper JM (2011) A novel functionally distinct subtype of striatal neuropeptide Y interneuron. J Neurosci 31(46):16757–16769. doi: 10.1523/JNEUROSCI.2628-11.2011, 31/46/16757 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7(6):476–486CrossRefPubMedGoogle Scholar
  37. 37.
    Szabadics J, Tamas G, Soltesz I (2007) Different transmitter transients underlie presynaptic cell type specificity of GABAA, slow and GABAA, fast. Proc Natl Acad Sci U S A 104(37):14831–14836. doi: 10.1073/pnas.0707204104 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Tamas G, Lorincz A, Simon A, Szabadics J (2003) Identified sources and targets of slow inhibition in the neocortex. Science 299(5614):1902–1905. doi: 10.1126/science.1082053 CrossRefPubMedGoogle Scholar
  39. 39.
    Bennett BD, Bolam JP (1993) Characterization of calretinin-immunoreactive structures in the striatum of the rat. Brain Res 609(1–2):137–148CrossRefPubMedGoogle Scholar
  40. 40.
    Tepper JM, Bolam JP (2004) Functional diversity and specificity of neostriatal interneurons. Curr Opin Neurobiol 14(6):685–692. doi: 10.1016/j.conb.2004.10.003, S0959-4388(04)00155-2 [pii]CrossRefPubMedGoogle Scholar
  41. 41.
    Wu Y, Parent A (2000) Striatal interneurons expressing calretinin, parvalbumin or NADPH-diaphorase: a comparative study in the rat, monkey and human. Brain Res 863(1–2):182–191CrossRefPubMedGoogle Scholar
  42. 42.
    Ibáñez-Sandoval O, Tecuapetla F, Unal B, Shah F, Koós T, Tepper JM (2010) Electrophysiological and morphological characteristics and synaptic connectivity of tyrosine hydroxylase-expressing neurons in adult mouse striatum. J Neurosci 30(20):6999–7016. doi: 10.1523/JNEUROSCI.5996-09.2010, 30/20/6999 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lee S, Hjerling-Leffler J, Zagha E, Fishell G, Rudy B (2010) The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. J Neurosci 30(50):16796–16808. doi: 10.1523/JNEUROSCI.1869-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Doig NM, Moss J, Bolam JP (2010) Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. J Neurosci 30(44):14610–14618. doi: 10.1523/JNEUROSCI.1623-10.2010, 30/44/14610 [pii]CrossRefPubMedGoogle Scholar
  45. 45.
    Wilson CJ (2007) GABAergic inhibition in the neostriatum. Prog Brain Res 160:91–110. doi: 10.1016/S0079-6123(06)60006-X, S0079-6123(06)60006-X [pii]CrossRefPubMedGoogle Scholar
  46. 46.
    Koós T, Tepper JM (1999) Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nat Neurosci 2(5):467–472. doi: 10.1038/8138 CrossRefPubMedGoogle Scholar
  47. 47.
    Kita H, Kosaka T, Heizmann CW (1990) Parvalbumin-immunoreactive neurons in the rat neostriatum: a light and electron microscopic study. Brain Res 536(1–2):1–15, doi: 0006-8993(90)90002-S [pii]CrossRefPubMedGoogle Scholar
  48. 48.
    Mallet N, Le Moine C, Charpier S, Gonon F (2005) Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo. J Neurosci 25(15):3857–3869CrossRefPubMedGoogle Scholar
  49. 49.
    Tunstall MJ, Oorschot DE, Kean A, Wickens JR (2002) Inhibitory interactions between spiny projection neurons in the rat striatum. J Neurophysiol 88(3):1263–1269PubMedGoogle Scholar
  50. 50.
    Czubayko U, Plenz D (2002) Fast synaptic transmission between striatal spiny projection neurons. Proc Natl Acad Sci U S A 99(24):15764–15769. doi: 10.1073/pnas.242428599, 242428599 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Guzman JN, Hernandez A, Galarraga E, Tapia D, Laville A, Vergara R, Aceves J, Bargas J (2003) Dopaminergic modulation of axon collaterals interconnecting spiny neurons of the rat striatum. J Neurosci 23(26):8931–8940PubMedGoogle Scholar
  52. 52.
    Koos T, Tepper JM, Wilson CJ (2004) Comparison of IPSCs evoked by spiny and fast-spiking neurons in the neostriatum. J Neurosci 24(36):7916–7922. doi: 10.1523/JNEUROSCI.2163-04.2004, 24/36/7916 [pii]CrossRefPubMedGoogle Scholar
  53. 53.
    Gustafson N, Gireesh-Dharmaraj E, Czubayko U, Blackwell KT, Plenz D (2006) A comparative voltage and current-clamp analysis of feedback and feedforward synaptic transmission in the striatal microcircuit in vitro. J Neurophysiol 95(2):737–752. doi: 10.1152/jn.00802.2005, 00802.2005 [pii]CrossRefPubMedGoogle Scholar
  54. 54.
    Gittis AH, Nelson AB, Thwin MT, Palop JJ, Kreitzer AC (2010) Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J Neurosci 30(6):2223–2234. doi: 10.1523/JNEUROSCI.4870-09.2010, 30/6/2223 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Gittis AH, Leventhal DK, Fensterheim BA, Pettibone JR, Berke JD, Kreitzer AC (2011) Selective inhibition of striatal fast-spiking interneurons causes dyskinesias. J Neurosci 31(44):15727–15731. doi: 10.1523/JNEUROSCI.3875-11.2011, 31/44/15727 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Planert H, Szydlowski S, Hjorth J, Grillner S, Silberberg G (2010) Dynamics of synaptic transmission between fast-spiking interneurons and striatal projection neurons of the direct and indirect pathways. J Neurosci 30(9):3499–3507. doi: 10.1523/JNEUROSCI.5139-09.2010, 30/9/3499 [pii]CrossRefPubMedGoogle Scholar
  57. 57.
    Taverna S, Ilijic E, Surmeier D (2008) Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson's disease. J Neurosci 28(21):5504–5512CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Adermark L (2011) Modulation of endocannabinoid-mediated long-lasting disinhibition of striatal output by cholinergic interneurons. Neuropharmacology 61(8):1314–1320. doi: 10.1016/j.neuropharm.2011.07.039 CrossRefPubMedGoogle Scholar
  59. 59.
    Packer AM, Yuste R (2011) Dense, unspecific connectivity of neocortical parvalbumin-positive interneurons: a canonical microcircuit for inhibition? J Neurosci 31(37):13260–13271. doi: 10.1523/JNEUROSCI.3131-11.2011, 31/37/13260 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Brown SP, Hestrin S (2009) Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457(7233):1133–1136. doi: 10.1038/nature07658, nature07658 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Markram H, Lübke J, Frotscher M, Roth A, Sakmann B (1997) Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J Physiol 500(Pt 2):409–440CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Szydlowski SN, Pollak Dorocic I, Planert H, Carlen M, Meletis K, Silberberg G (2013) Target selectivity of feedforward inhibition by striatal fast-spiking interneurons. J Neurosci 33(4):1678–1683. doi: 10.1523/JNEUROSCI.3572-12.2013 CrossRefPubMedGoogle Scholar
  63. 63.
    Yung KK, Smith AD, Levey AI, Bolam JP (1996) Synaptic connections between spiny neurons of the direct and indirect pathways in the neostriatum of the rat: evidence from dopamine receptor and neuropeptide immunostaining. Eur J Neurosci 8(5):861–869CrossRefPubMedGoogle Scholar
  64. 64.
    Pereda AE, Curti S, Hoge G, Cachope R, Flores CE, Rash JE (2012) Gap junction-mediated electrical transmission: REGULATORY mechanisms and plasticity. Biochim Biophys Acta. doi: S0005-2736(12)00184-8 [pii] 10.1016/j.bbamem.2012.05.026Google Scholar
  65. 65.
    Galarreta M, Hestrin S (1999) A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402(6757):72–75CrossRefPubMedGoogle Scholar
  66. 66.
    Gibson JR, Beierlein M, Connors BW (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402(6757):75–79. doi: 10.1038/47035 CrossRefPubMedGoogle Scholar
  67. 67.
    Berke JD (2008) Uncoordinated firing rate changes of striatal fast-spiking interneurons during behavioral task performance. J Neurosci 28(40):10075–10080. doi: 10.1523/JNEUROSCI.2192-08.2008, 28/40/10075 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Hjorth J, Blackwell KT, Kotaleski JH (2009) Gap junctions between striatal fast-spiking interneurons regulate spiking activity and synchronization as a function of cortical activity. J Neurosci 29(16):5276–5286. doi: 10.1523/JNEUROSCI.6031-08.2009, 29/16/5276 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci U S A 94(2):719–723CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Thomson AM, Deuchars J (1997) Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro. Cereb Cortex 7(6):510–522CrossRefPubMedGoogle Scholar
  71. 71.
    Markram H, Wang Y, Tsodyks M (1998) Differential signaling via the same axon of neocortical pyramidal neurons. Proc Natl Acad Sci U S A 95(9):5323–5328CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Taverna S, van Dongen YC, Groenewegen HJ, Pennartz CM (2004) Direct physiological evidence for synaptic connectivity between medium-sized spiny neurons in rat nucleus accumbens in situ. J Neurophysiol 91(3):1111–1121. doi: 10.1152/jn.00892.2003, 00892.2003 [pii]CrossRefPubMedGoogle Scholar
  73. 73.
    Venance L, Glowinski J, Giaume C (2004) Electrical and chemical transmission between striatal GABAergic output neurones in rat brain slices. J Physiol 559(Pt 1):215–230. doi: 10.1113/jphysiol.2004.065672, jphysiol.2004.065672 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Klaus A, Planert H, Hjorth JJ, Berke JD, Silberberg G, Kotaleski JH (2011) Striatal fast-spiking interneurons: from firing patterns to postsynaptic impact. Front Syst Neurosci 5:57. doi: 10.3389/fnsys.2011.00057 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Calabresi P, Picconi B, Tozzi A, Di Filippo M (2007) Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 30(5):211–219CrossRefPubMedGoogle Scholar
  77. 77.
    Kreitzer A, Malenka R (2008) Striatal plasticity and basal ganglia circuit function. Neuron 60(4):543–554CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Fino E, Venance L (2011) Spike-timing dependent plasticity in striatal interneurons. Neuropharmacology 60(5):780–788. doi: 10.1016/j.neuropharm.2011.01.023, S0028-3908(11)00026-8 [pii]CrossRefPubMedGoogle Scholar
  79. 79.
    Lovinger DM (2010) Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 58(7):951–961. doi: 10.1016/j.neuropharm.2010.01.008, S0028-3908(10)00022-5 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Adermark L, Lovinger DM (2009) Frequency-dependent inversion of net striatal output by endocannabinoid-dependent plasticity at different synaptic inputs. J Neurosci 29(5):1375–1380. doi: 10.1523/JNEUROSCI.3842-08.2009, 29/5/1375 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Adermark L, Lovinger DM (2007) Retrograde endocannabinoid signaling at striatal synapses requires a regulated postsynaptic release step. Proc Natl Acad Sci U S A 104(51):20564–20569. doi: 10.1073/pnas.0706873104 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Adermark L, Talani G, Lovinger DM (2009) Endocannabinoid-dependent plasticity at GABAergic and glutamatergic synapses in the striatum is regulated by synaptic activity. Eur J Neurosci 29(1):32–41. doi: 10.1111/j.1460-9568.2008.06551.x, EJN6551 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268. doi: 10.1038/nn1525, nn1525 [pii]CrossRefPubMedGoogle Scholar
  84. 84.
    Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K (2011) Optogenetics in neural systems. Neuron 71(1):9–34. doi: 10.1016/j.neuron.2011.06.004 CrossRefPubMedGoogle Scholar
  85. 85.
    Chuhma N, Tanaka KF, Hen R, Rayport S (2011) Functional connectome of the striatal medium spiny neuron. J Neurosci 31(4):1183–1192. doi: 10.1523/JNEUROSCI.3833-10.2011, 31/4/1183 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Gerfen CR, Baimbridge KG, Miller JJ (1985) The neostriatal mosaic: compartmental distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey. Proc Natl Acad Sci U S A 82(24):8780–8784CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Paladini CA, Celada P, Tepper JM (1999) Striatal, pallidal, and pars reticulata evoked inhibition of nigrostriatal dopaminergic neurons is mediated by GABA(A) receptors in vivo. Neuroscience 89(3):799–812CrossRefPubMedGoogle Scholar
  88. 88.
    Rav-Acha M, Sagiv N, Segev I, Bergman H, Yarom Y (2005) Dynamic and spatial features of the inhibitory pallidal GABAergic synapses. Neuroscience 135(3):791–802. doi: 10.1016/j.neuroscience.2005.05.069 CrossRefPubMedGoogle Scholar
  89. 89.
    English DF, Ibanez-Sandoval O, Stark E, Tecuapetla F, Buzski G, Deisseroth K, Tepper JM, Koos T (2012) GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons. Nat Neurosci 15(1):123–130. doi: 10.1038/nn.2984, nn.2984 [pii]CrossRefGoogle Scholar
  90. 90.
    Threlfell S, Lalic T, Platt NJ, Jennings KA, Deisseroth K, Cragg SJ (2012) Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 75(1):58–64. doi: 10.1016/j.neuron.2012.04.038, S0896-6273(12)00443-6 [pii]CrossRefPubMedGoogle Scholar
  91. 91.
    Tritsch NX, Ding JB, Sabatini BL (2012) Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 490(7419):262–266. doi: 10.1038/nature11466, nature11466 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Nelson AB, Hammack N, Yang CF, Shah NM, Seal RP, Kreitzer AC (2014) Striatal cholinergic interneurons Drive GABA release from dopamine terminals. Neuron 82(1):63–70. doi: 10.1016/j.neuron.2014.01.023 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Chuhma N, Mingote S, Moore H, Rayport S (2014) Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling. Neuron 81(4):901–912. doi: 10.1016/j.neuron.2013.12.027 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Karnani MM, Agetsuma M, Yuste R (2014) A blanket of inhibition: functional inferences from dense inhibitory connectivity. Curr Opin Neurobiol 26:96–102. doi: 10.1016/j.conb.2013.12.015 CrossRefPubMedGoogle Scholar
  95. 95.
    Lei W, Jiao Y, Del Mar N, Reiner A (2004) Evidence for differential cortical input to direct pathway versus indirect pathway striatal projection neurons in rats. J Neurosci 24(38):8289–8299CrossRefPubMedGoogle Scholar
  96. 96.
    Kress GJ, Yamawaki N, Wokosin DL, Wickersham IR, Shepherd GM, Surmeier DJ (2013) Convergent cortical innervation of striatal projection neurons. Nat Neurosci 16(6):665–667. doi: 10.1038/nn.3397 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Mathur BN, Tanahira C, Tamamaki N, Lovinger DM (2013) Voltage drives diverse endocannabinoid signals to mediate striatal microcircuit-specific plasticity. Nat Neurosci 16(9):1275–1283. doi: 10.1038/nn.3478 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Kravitz A, Freeze B, Parker P, Kay K, Thwin M, Deisseroth K, Kreitzer A (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466(7306):622–626. doi: 10.1038/nature09159, nature09159 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Smith KS, Graybiel AM (2013) Using optogenetics to study habits. Brain Res 1511:102–114. doi: 10.1016/j.brainres.2013.01.008 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Witten IB, Lin SC, Brodsky M, Prakash R, Diester I, Anikeeva P, Gradinaru V, Ramakrishnan C, Deisseroth K (2010) Cholinergic interneurons control local circuit activity and cocaine conditioning. Science 330(6011):1677–1681. doi: 10.1126/science.1193771, 330/6011/1677 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Katz Y, Yizhar O, Staiger J, Lampl I (2013) Optopatcher – an electrode holder for simultaneous intracellular patch-clamp recording and optical manipulation. J Neurosci Methods 214(1):113–117. doi: 10.1016/j.jneumeth.2013.01.017 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of NeuroscienceKarolinska InstituteStockholmSweden
  2. 2.Institute of NeurophysiologyCharité Universitätsmedizin BerlinBerlinGermany

Personalised recommendations