Analysis of Transsynaptic Attentional Neuronal Circuits with Octuple Patch-Clamp Recordings

  • Daniel R. Wyskiel
  • Trevor C. Larry
  • Xiaolong Jiang
  • Guangfu Wang
  • J. Julius ZhuEmail author
Part of the Neuromethods book series (NM, volume 113)


Deciphering interneuronal circuitry is essential to understanding brain functions yet remains a daunting task in neurobiology. To facilitate the dissection of complex cortical neuronal circuits, a process requiring analysis of synaptic interconnections and identification of cell types of interconnected neurons, we have developed a simultaneous quadruple-octuple whole-cell recordings technique that allows physiological analysis of synaptic interconnection among up to eight neurons and anatomical identification of the majority of recorded neurons. Using this method, we have recently revealed two transsynaptic disinhibitory and inhibitory circuits connecting layer 1–3 interneurons with pyramidal neurons in both supragranular and infragranular cortical layers of the rat neocortex. Here, we outline the technique that permits decoding the complex cortical interneuronal circuits involved in controlling salience detection.

Key words

Multiple whole-cell recordings Interneurons Circuits Coincidence detection Salience 


  1. 1.
    Gilbert CD, Wiesel TN (1983) Functional organization of the visual cortex. Prog Brain Res 58:209CrossRefPubMedGoogle Scholar
  2. 2.
    Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120(Pt 4):701CrossRefPubMedGoogle Scholar
  3. 3.
    Kastner S, Ungerleider LG (2000) Mechanisms of visual attention in the human cortex. Annu Rev Neurosci 23:315CrossRefPubMedGoogle Scholar
  4. 4.
    Douglas RJ, Martin KA (2007) Mapping the matrix: the ways of neocortex. Neuron 56:226CrossRefPubMedGoogle Scholar
  5. 5.
    Robinson DL, Petersen SE (1992) The pulvinar and visual salience. Trends Neurosci 15:127CrossRefPubMedGoogle Scholar
  6. 6.
    Tomita H, Ohbayashi M, Nakahara K, Hasegawa I, Miyashita Y (1999) Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 401:699CrossRefPubMedGoogle Scholar
  7. 7.
    Pascual-Leone A, Walsh V (2001) Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science 292:510CrossRefPubMedGoogle Scholar
  8. 8.
    Gilbert CD, Sigman M (2007) Brain states: top-down influences in sensory processing. Neuron 54:677CrossRefPubMedGoogle Scholar
  9. 9.
    van Boxtel JJ, Tsuchiya N, Koch C (2010) Consciousness and attention: on sufficiency and necessity. Front Psychol 1:217PubMedPubMedCentralGoogle Scholar
  10. 10.
    Baluch F, Itti L (2011) Mechanisms of top-down attention. Trends Neurosci 34:210CrossRefPubMedGoogle Scholar
  11. 11.
    Purushothaman G, Marion R, Li K, Casagrande VA (2012) Gating and control of primary visual cortex by pulvinar. Nat Neurosci 15:905CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    van Gaal S, Lamme VA (2012) Unconscious high-level information processing: implication for neurobiological theories of consciousness. Neuroscientist 18(287)Google Scholar
  13. 13.
    Larkum M (2013) A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends Neurosci 36:141CrossRefPubMedGoogle Scholar
  14. 14.
    Zhu Y, Zhu JJ (2004) Rapid arrival and integration of ascending sensory information in layer 1 nonpyramidal neurons and tuft dendrites of layer 5 pyramidal neurons of the neocortex. J Neurosci 24:1272CrossRefPubMedGoogle Scholar
  15. 15.
    Zhu JJ (2009) Activity level-dependent synapse-specific AMPA receptor trafficking regulates transmission kinetics. J Neurosci 29:6320CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jiang X, Wang G, Lee AJ, Stornetta RL, Zhu JJ (2013) The organization of two new cortical interneuronal circuits. Nat Neurosci 16:210CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kuhn B, Denk W, Bruno RM (2008) In vivo two-photon voltage-sensitive dye imaging reveals top-down control of cortical layers 1 and 2 during wakefulness. Proc Natl Acad Sci U S A 105:7588CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cauller LJ, Kulics AT (1991) The neural basis of the behaviorally relevant N1 component of the somatosensory-evoked potential in SI cortex of awake monkeys: evidence that backward cortical projections signal conscious touch sensation. Exp Brain Res 84:607CrossRefPubMedGoogle Scholar
  19. 19.
    Letzkus JJ et al (2011) A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480:331CrossRefPubMedGoogle Scholar
  20. 20.
    Christophe E et al (2002) Two types of nicotinic receptors mediate an excitation of neocortical layer I interneurons. J Neurophysiol 88:1318PubMedGoogle Scholar
  21. 21.
    Yuen EY, Yan Z (2009) Dopamine D4 receptors regulate AMPA receptor trafficking and glutamatergic transmission in GABAergic interneurons of prefrontal cortex. J Neurosci 29:550CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Brombas A, Fletcher LN, Williams SR (2014) Activity-dependent modulation of layer 1 inhibitory neocortical circuits by acetylcholine. J Neurosci 34:1932CrossRefPubMedGoogle Scholar
  23. 23.
    Chu Z, Galarreta M, Hestrin S (2003) Synaptic interactions of late-spiking neocortical neurons in layer 1. J Neurosci 23:96PubMedGoogle Scholar
  24. 24.
    Wozny C, Williams SR (2011) Specificity of synaptic connectivity between layer 1 inhibitory interneurons and layer 2/3 pyramidal neurons in the rat neocortex. Cereb Cortex 21:1818CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kubota Y et al (2011) Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons. Cereb Cortex 21:1803CrossRefPubMedGoogle Scholar
  26. 26.
    Cruikshank SJ et al (2012) Thalamic control of layer 1 circuits in prefrontal cortex. J Neurosci 32:17813CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ma J, Yao XH, Fu Y, Yu YC (2014) Development of layer 1 neurons in the mouse neocortex. Cereb Cortex 24:2604Google Scholar
  28. 28.
    Muralidhar S, Wang Y, Markram H (2013) Synaptic and cellular organization of layer 1 of the developing rat somatosensory cortex. Front Neuroanat 7:52PubMedGoogle Scholar
  29. 29.
    Lee AJ et al (2015) Canonical organization of layer 1 neuron-led cortical inhibitory and disinhibitory interneuronal circuits. Cereb Cortex 25:2114Google Scholar
  30. 30.
    Ascoli GA et al (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9:557CrossRefPubMedGoogle Scholar
  31. 31.
    Reyes A (2001) Influence of dendritic conductances on the input-output properties of neurons. Annu Rev Neurosci 24:653CrossRefPubMedGoogle Scholar
  32. 32.
    Sjostrom PJ, Rancz EA, Roth A, Hausser M (2008) Dendritic excitability and synaptic plasticity. Physiol Rev 88:769CrossRefPubMedGoogle Scholar
  33. 33.
    Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206CrossRefPubMedGoogle Scholar
  34. 34.
    Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3CrossRefPubMedGoogle Scholar
  35. 35.
    DeFelipe J, Farinas I (1992) The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol 39:563CrossRefPubMedGoogle Scholar
  36. 36.
    Johnson RR, Burkhalter A (1997) A polysynaptic feedback circuit in rat visual cortex. J Neurosci 17:7129PubMedGoogle Scholar
  37. 37.
    Cauller LJ, Clancy B, Connors BW (1998) Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I. J Comp Neurol 390:297CrossRefPubMedGoogle Scholar
  38. 38.
    Petreanu L, Mao T, Sternson SM, Svoboda K (2009) The subcellular organization of neocortical excitatory connections. Nature 457:1142CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Schiller J, Schiller Y, Stuart G, Sakmann B (1997) Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J Physiol (Lond) 505(605)Google Scholar
  40. 40.
    Zhu JJ, Connors BW (1999) Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. J Neurophysiol 81:1171PubMedGoogle Scholar
  41. 41.
    Zhu JJ (2000) Maturation of layer 5 neocortical pyramidal neurons: amplifying salient layer 1 and layer 4 inputs by Ca2+ action potentials in adult rat tuft dendrites. J Physiol (Lond) 526(571)Google Scholar
  42. 42.
    Larkum ME, Zhu JJ (2002) Signaling of layer 1 and whisker-evoked Ca2+ and Na+ action potentials in distal and terminal dendrites of rat neocortical pyramidal neurons in vitro and in vivo. J Neurosci 22:6991PubMedGoogle Scholar
  43. 43.
    Antic SD (2003) Action potentials in basal and oblique dendrites of rat neocortical pyramidal neurons. J Physiol 550:35CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Larkum ME, Zhu JJ, Sakmann B (1999) A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398:338CrossRefPubMedGoogle Scholar
  45. 45.
    Waters J, Larkum M, Sakmann B, Helmchen F (2003) Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. J Neurosci 23:8558PubMedGoogle Scholar
  46. 46.
    Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J (2009) Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325:756CrossRefPubMedGoogle Scholar
  47. 47.
    Xu NL et al (2012) Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature 492:247CrossRefPubMedGoogle Scholar
  48. 48.
    Lisman JE (1997) Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci 20:38CrossRefPubMedGoogle Scholar
  49. 49.
    Huang ZJ, Di Cristo G, Ango F (2007) Development of GABA innervation in the cerebral and cerebellar cortices. Nat Rev Neurosci 8:673CrossRefPubMedGoogle Scholar
  50. 50.
    Batista-Brito R, Fishell G (2009) The developmental integration of cortical interneurons into a functional network. Curr Top Dev Biol 87:81CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Geiger JR et al (2002) Patch-clamp recording in brain slices with improved slicer technology. Pflugers Arch 443:491CrossRefPubMedGoogle Scholar
  52. 52.
    Edwards FA, Konnerth A, Sakmann B, Takahashi T (1989) A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflugers Arch 414:600CrossRefPubMedGoogle Scholar
  53. 53.
    Wang G et al (2014) An optogenetics- and imaging-assisted simultaneous multiple patch-clamp recordings system for decoding complex neural circuits. Nat Protoc 10:397Google Scholar
  54. 54.
    Davie JT et al (2006) Dendritic patch-clamp recording. Nat Protoc 1:1235CrossRefPubMedGoogle Scholar
  55. 55.
    Feldmeyer D, Egger V, Lubke J, Sakmann B (1999) Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single “barrel” of developing rat somatosensory cortex. J Physiol 521(Pt 1):169CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Markram H et al (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793CrossRefPubMedGoogle Scholar
  57. 57.
    Kubota Y (2014) Untangling GABAergic wiring in the cortical microcircuit. Curr Opin Neurobiol 26:7CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Daniel R. Wyskiel
    • 1
    • 2
  • Trevor C. Larry
    • 1
    • 3
  • Xiaolong Jiang
    • 1
  • Guangfu Wang
    • 1
  • J. Julius Zhu
    • 1
    Email author
  1. 1.Department of PharmacologyUniversity of Virginia School of MedicineCharlottesvilleUSA
  2. 2.Department of Neuroscience Graduate ProgramUniversity of Virginia School of MedicineCharlottesvilleUSA
  3. 3.Department of Neuroscience Undergraduate ProgramUniversity of Virginia School of MedicineCharlottesvilleUSA

Personalised recommendations