Patch-Clamp Recording from Myelinated Central Axons

  • Maarten H. P. Kole
  • Marko A. Popovic
Part of the Neuromethods book series (NM, volume 113)


Axons perform the main fundamental electrical operations of neurons. Emerging near the soma, axons integrate synaptic potentials, convert these into action potentials, and conduct the output signal to the presynaptic terminals. With the establishment of patch-clamp recording techniques in brain slices in combination with high-resolution microscopy, it has now become possible to visually target patch-clamp electrodes to various domains of the axon. This chapter provides an overview of the methodology for obtaining patch-clamp recordings from axons, with a focus on their unmyelinated regions, including the axon initial segment and axonal cut endings. Axonal patch-clamp recordings are a prerequisite for the study of the biophysics and diversity of axonal voltage-gated ion channels; in particular, high-temporal resolution, low-noise voltage recordings offer detailed insights into the fast computational properties of central nervous system axons.

Key words

Axon Myelin Bleb Voltage clamp Action potential 



Maarten H.P. Kole is grantee of an ERC Starting Grant (FP7 framework, Grant #261114) and National MS Society Research Grant (RG 4924A1/1). The authors are thankful to Stefan Hallerman and Charles Cohen for critical reading and valuable comments to the manuscript and Sharon de Vries for support in the preparation of the figures.


  1. 1.
    Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100CrossRefPubMedGoogle Scholar
  3. 3.
    Stuart GJ, Dodt HU, Sakmann B (2004) Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflugers Arch 423:511–518CrossRefGoogle Scholar
  4. 4.
    Geiger JRP, Bischofberger J, Vida I, Fröbe U, Pfitzinger S, Weber HJ, Haverkampf K, Jonas P (2002) Patch-clamp recording in brain slices with improved slicer technology. Pflugers Arch 443:491–501. doi: 10.1007/s00424-001-0735-3 CrossRefPubMedGoogle Scholar
  5. 5.
    Monsivais P, Clark BA, Roth A, Häusser M (2005) Determinants of action potential propagation in cerebellar Purkinje cell axons. J Neurosci 25:464–472. doi: 10.1523/JNEUROSCI.3871-04.2005 CrossRefPubMedGoogle Scholar
  6. 6.
    Bischofberger J, Engel D, Li L, Geiger JRP, Jonas P (2006) Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat Protoc 1:2075–2081. doi: 10.1038/nprot.2006.312 CrossRefPubMedGoogle Scholar
  7. 7.
    Sasaki T, Matsuki N, Ikegaya Y (2012) Targeted axon-attached recording with fluorescent patch-clamp pipettes in brain slices. Nat Protoc 7:1228–1234. doi: 10.1038/nprot.2012.061 CrossRefPubMedGoogle Scholar
  8. 8.
    Cajal SRY (1959) Degeneration & regeneration of the nervous system. Hafner Pub. Co., New YorkGoogle Scholar
  9. 9.
    Xie XY, Barrett JN (1991) Membrane resealing in cultured rat septal neurons after neurite transection: evidence for enhancement by Ca(2+)-triggered protease activity and cytoskeletal disassembly. J Neurosci 11:3257–3267PubMedGoogle Scholar
  10. 10.
    Kole MHP (2011) First node of Ranvier facilitates high-frequency burst encoding. Neuron 71:671–682. doi: 10.1016/j.neuron.2011.06.024 CrossRefPubMedGoogle Scholar
  11. 11.
    Roza C, Castillejo S, Lopez-García JA (2011) Accumulation of Kv7.2 channels in putative ectopic transduction zones of mice nerve-end neuromas. Mol Pain 7:58. doi: 10.1186/1744-8069-7-58 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kole MHP, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ (2008) Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 11:178–186. doi: 10.1038/nn2040 CrossRefPubMedGoogle Scholar
  13. 13.
    Hu H, Jonas P (2014) A supercritical density of Na(+) channels ensures fast signaling in GABAergic interneuron axons. Nat Neurosci 17(5):686–693. doi: 10.1038/nn.3678 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hu W, Tian C, Li T, Yang M, Hou H, Shu Y (2009) Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation. Nat Neurosci 12:996–1002. doi: 10.1038/nn.2359 CrossRefPubMedGoogle Scholar
  15. 15.
    Battefeld A, Tran BT, Gavrilis J, Cooper EC, Kole MHP (2014) Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons. J Neurosci 34:3719–3732. doi: 10.1523/JNEUROSCI.4206-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Davie JT, Kole MHP, Letzkus JJ, Rancz EA, Spruston N, Stuart GJ, Häusser M (2006) Dendritic patch-clamp recording. Nat Protoc 1:1235–1247. doi: 10.1038/nprot.2006.164 CrossRefPubMedGoogle Scholar
  17. 17.
    Kole MHP, Letzkus JJ, Stuart GJ (2007) Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron 55:633–647. doi: 10.1016/j.neuron.2007.07.031 CrossRefPubMedGoogle Scholar
  18. 18.
    Jonas P, Bräu ME, Hermsteiner M, Vogel W (1989) Single-channel recording in myelinated nerve fibers reveals one type of Na channel but different K channels. Proc Natl Acad Sci U S A 86:7238–7242CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Safronov BV, Kampe K, Vogel W (1993) Single voltage-dependent potassium channels in rat peripheral nerve membrane. J Physiol 460:675–691CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hu W, Shu Y (2012) Axonal bleb recording. Neurosci Bull 28:342–350. doi: 10.1007/s12264-012-1247-1 CrossRefPubMedGoogle Scholar
  21. 21.
    Magistretti J, Mantegazza M, Guatteo E, Wanke E (1996) Action potentials recorded with patch-clamp amplifiers: are they genuine? Trends Neurosci 19:530–534CrossRefPubMedGoogle Scholar
  22. 22.
    Marx M, Günter RH, Hucko W, Radnikow G, Feldmeyer D (2012) Improved biocytin labeling and neuronal 3D reconstruction. Nat Protoc 7:394–407. doi: 10.1038/nprot.2011.449 CrossRefPubMedGoogle Scholar
  23. 23.
    Williams SR, Mitchell S (2008) Direct measurement of somatic voltage clamp errors in central neurons. Nat Neurosci 11(7):790–798. doi: 10.1038/nn.2137 CrossRefPubMedGoogle Scholar
  24. 24.
    Taylor RE, Moore JW, Cole KS (1960) Analysis of certain errors in squid axon voltage clamp measurements. Biophys J 1:161–202. doi: 10.1016/S0006-3495(60)86882-8 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Schaefer AT, Helmstaedter M, Sakmann B, Korngreen A (2003) Correction of conductance measurements in non-space-clamped structures: 1. Voltage-gated K+ channels. Biophys J 84:3508–3528. doi: 10.1016/S0006-3495(03)75086-3 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Major G, Evans JD, Jack JJB (1993) Solutions for transients in arbitrarily branching cables. Biophys J 65:450–468. doi: 10.1016/S0006-3495(93)81038-5 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Williams SR, Wozny C (2011) Errors in the measurement of voltage-activated ion channels in cell-attached patch-clamp recordings. Nat Commun 2:242. doi: 10.1038/ncomms1225 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kole MHP, Stuart GJ (2012) Signal processing in the axon initial segment. Neuron 73:235–247. doi: 10.1016/j.neuron.2012.01.007 CrossRefPubMedGoogle Scholar
  29. 29.
    Sasaki T, Matsuki N, Ikegaya Y (2011) Action-potential modulation during axonal conduction. Science 331:599–601. doi: 10.1126/science.1197598 CrossRefPubMedGoogle Scholar
  30. 30.
    Alle H, Geiger JRP (2006) Combined analog and action potential coding in hippocampal mossy fibers. Science 311:1290–1293. doi: 10.1126/science.1119055 CrossRefPubMedGoogle Scholar
  31. 31.
    Novak P, Gorelik J, Vivekananda U, Shevchuk AI, Ermolyuk YS, Bailey RJ, Bushby AJ, Moss GWJ, Rusakov DA, Klenerman D, Kullmann DM, Volynski KE, Korchev YE (2013) Nanoscale-targeted patch-clamp recordings of functional presynaptic ion channels. Neuron 79:1067–1077. doi: 10.1016/j.neuron.2013.07.012 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Maarten H. P. Kole
    • 1
    • 2
  • Marko A. Popovic
    • 1
  1. 1.Department of Axonal Signaling, Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
  2. 2.Department of Cell Biology, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations