Dendrites: Recording from Fine Neuronal Structures Using Patch-Clamp and Imaging Techniques

  • Sonia GaspariniEmail author
  • Lucy M. Palmer
Part of the Neuromethods book series (NM, volume 113)


Dendrites are the principal site of synaptic input onto neurons but despite their importance in neuronal signaling, little is known about how they receive and transform this input. This is due largely to their typically submicron size, which has historically rendered them inaccessible for direct recording. However, the advent of electrophysiological patch-clamp and advanced imaging techniques over the past few decades has opened this field of research. Fuelled by Rall’s theory of active dendritic integration, intracellular recording techniques proved that dendrites do indeed have active conductances which modify synaptic input and thereby alter neuronal output in response to certain patterns of information. Furthermore, advances in fluorescence imaging have highlighted the importance of dendritic activity during sensory processing and behavior. Here we summarize advances in experimental methods, namely electrophysiological and fluorescence imaging techniques, which have improved the accessibility of recording from fine dendritic structures.

Key words

Dendrite Imaging Synapse Dendritic channels In vitro Brain slice Calcium indicators GFP 



This work was supported by NIH grant NS069714 (to SG) and NHMRC grants 1063533 and 1085708 (to LMP).


  1. 1.
    Deiters O (1865) Untersuchungen über Gehirn und Rückenmark des Menschen und der Säugethiere. Vieweg, BraunschweigCrossRefGoogle Scholar
  2. 2.
    Cajal SR (1889) The dynamic clamp comes of age. Med Pract 2:341–346Google Scholar
  3. 3.
    Brock LG, Eccles JC, Rall W (1951) Experimental investigations on the afferent fibres in muscle nerves. Proc R Soc Lond Ser B Biol Sci 138:453–475CrossRefGoogle Scholar
  4. 4.
    Bullock TH, Hagiwara S (1957) Intracellular recording from the giant synapse of the squid. J Gen Physiol 40:565–577PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Eccles RM (1955) Intracellular potentials recorded from a mammalian sympathetic ganglion. J Physiol 130:572–584PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Rall W (1977) Core conductor theory and cable properties of neurons. In: Kandel E, Brookhart J, Mountcastle V (eds) Handbook of physiology, the nervous system, vol 1, 2nd edn, Cellular biology of neurons. Oxford University Press, Oxford, pp 39–97Google Scholar
  7. 7.
    Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat 93:420–433PubMedPubMedCentralGoogle Scholar
  8. 8.
    Gray EG (1959) Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature 183:1592–1593PubMedCrossRefGoogle Scholar
  9. 9.
    Segev I, Rall W (1998) Excitable dendrites and spines: earlier theoretical insights elucidate recent direct observations. Trends Neurosci 21:453–460. doi: 10.1016/S0166-2236(98)01327-7 PubMedCrossRefGoogle Scholar
  10. 10.
    Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802PubMedCrossRefGoogle Scholar
  11. 11.
    Neher E, Sakmann B, Steinbach JH (1978) The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Pflügers Arch 375:219–228PubMedCrossRefGoogle Scholar
  12. 12.
    Stuart GJ, Dodt HU, Sakmann B (1993) Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflügers Arch 423:511–518PubMedCrossRefGoogle Scholar
  13. 13.
    Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69–72. doi: 10.1038/367069a0 PubMedCrossRefGoogle Scholar
  14. 14.
    Magee JC, Johnston D (1995) Characterization of single voltage-gated Na + and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J Physiol 487(Pt 1):67–90PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Stuart G, Häusser M (1994) Initiation and spread of sodium action potentials in cerebellar purkinje cells. Neuron 13:703–712. doi: 10.1016/0896-6273(94)90037-X PubMedCrossRefGoogle Scholar
  16. 16.
    Magee JC (2007) Dendritic voltage-gated ion channels. In: Stuart GJ, Spruston N, Häusser M (eds) Dendrites, 2nd edn. Oxford University Press, Oxford, pp 225–250CrossRefGoogle Scholar
  17. 17.
    Dan Y, Poo M-M (2004) Spike timing-dependent plasticity of neural circuits. Neuron 44:23–30. doi: 10.1016/j.neuron.2004.09.007 PubMedCrossRefGoogle Scholar
  18. 18.
    Larkum ME, Nevian T (2008) Synaptic clustering by dendritic signalling mechanisms. Curr Opin Neurobiol 18:321–331. doi: 10.1016/j.conb.2008.08.013 PubMedCrossRefGoogle Scholar
  19. 19.
    Ariav G, Polsky A, Schiller J (2003) Submillisecond precision of the input-output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons. J Neurosci 23:7750–7758PubMedGoogle Scholar
  20. 20.
    Gasparini S, Magee JC (2006) State-dependent dendritic computation in hippocampal CA1 pyramidal neurons. J Neurosci 26:2088–2100. doi: 10.1523/JNEUROSCI.4428-05.2006 PubMedCrossRefGoogle Scholar
  21. 21.
    Losonczy A, Magee JC (2006) Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50:291–307. doi: 10.1016/j.neuron.2006.03.016 PubMedCrossRefGoogle Scholar
  22. 22.
    Milojkovic BA, Wuskell JP, Loew LM, Antic SD (2005) Initiation of sodium spikelets in basal dendrites of neocortical pyramidal neurons. J Membr Biol 208:155–169. doi: 10.1007/s00232-005-0827-7 PubMedCrossRefGoogle Scholar
  23. 23.
    Larkum ME, Zhu JJ, Sakmann B (1999) A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398:338–341. doi: 10.1038/18686 PubMedCrossRefGoogle Scholar
  24. 24.
    Schiller J, Schiller Y, Stuart G, Sakmann B (1997) Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J Physiol 505(Pt 3):605–616PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Branco T, Häusser M (2011) Synaptic integration gradients in single cortical pyramidal cell dendrites. Neuron 69:885–892. doi: 10.1016/j.neuron.2011.02.006 PubMedCrossRefGoogle Scholar
  26. 26.
    Larkum ME, Nevian T, Sandler M et al (2009) Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325:756–760. doi: 10.1126/science.1171958 PubMedCrossRefGoogle Scholar
  27. 27.
    Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7:621–627. doi: 10.1038/nn1253 PubMedCrossRefGoogle Scholar
  28. 28.
    Lavzin M, Rapoport S, Polsky A et al (2012) Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo. Nature 490:397–401. doi: 10.1038/nature11451 PubMedCrossRefGoogle Scholar
  29. 29.
    Palmer LM, Shai AS, Reeve JE et al (2014) NMDA spikes enhance action potential generation during sensory input. Nat Neurosci 17:383–390. doi: 10.1038/nn.3646 PubMedCrossRefGoogle Scholar
  30. 30.
    Xu N, Harnett MT, Williams SR et al (2012) Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature 492:247–251. doi: 10.1038/nature11601 PubMedCrossRefGoogle Scholar
  31. 31.
    Rubio-Garrido P, Pérez-de-Manzo F, Porrero C et al (2009) Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. Cereb Cortex 19:2380–2395. doi: 10.1093/cercor/bhn259 PubMedCrossRefGoogle Scholar
  32. 32.
    Cauller LJ, Clancy B, Connors BW (1998) Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I. J Comp Neurol 390:297–310PubMedCrossRefGoogle Scholar
  33. 33.
    Witter MP, Groenewegen HJ (1986) Connections of the parahippocampal cortex in the cat. III. Cortical and thalamic efferents. J Comp Neurol 252:1–31. doi: 10.1002/cne.902520102 PubMedCrossRefGoogle Scholar
  34. 34.
    Larkman AU (1991) Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns. J Comp Neurol 306:307–319. doi: 10.1002/cne.903060207 PubMedCrossRefGoogle Scholar
  35. 35.
    Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47PubMedCrossRefGoogle Scholar
  36. 36.
    Amaral DG, Lavenex P (2006) Hippocampal neuroanatomy. In: Andersen P, Morris R, Bliss T, O’Keefe J (eds) Hippocampus book. Oxford University Press, Oxford, pp 37–114Google Scholar
  37. 37.
    Kim J-M, Hwa J, Garriga P et al (2005) Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops. Biochemistry 44:2284–2292. doi: 10.1021/bi048328i PubMedCrossRefGoogle Scholar
  38. 38.
    Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945. doi: 10.1073/pnas.1936192100 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412. doi: 10.1146/annurev-neuro-061010-113817 PubMedCrossRefGoogle Scholar
  40. 40.
    Losonczy A, Zemelman BV, Vaziri A, Magee JC (2010) Network mechanisms of theta related neuronal activity in hippocampal CA1 pyramidal neurons. Nat Neurosci 13:967–972. doi: 10.1038/nn.2597 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Buzsáki G, Penttonen M, Nádasdy Z, Bragin A (1996) Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo. Proc Natl Acad Sci U S A 93:9921–9925PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Helmchen F, Svoboda K, Denk W, Tank DW (1999) In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat Neurosci 2:989–996. doi: 10.1038/14788 PubMedCrossRefGoogle Scholar
  43. 43.
    Smith SL, Smith IT, Branco T, Häusser M (2013) Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo. Nature 503:115–120. doi: 10.1038/nature12600 PubMedCrossRefGoogle Scholar
  44. 44.
    Svoboda K, Helmchen F, Denk W, Tank DW (1999) Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo. Nat Neurosci 2:65–73. doi: 10.1038/4569 PubMedCrossRefGoogle Scholar
  45. 45.
    Edwards FA, Konnerth A, Sakmann B, Takahashi T (1989) A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflügers Arch 414:600–612PubMedCrossRefGoogle Scholar
  46. 46.
    Hamill OP, Marty A, Neher E et al (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100PubMedCrossRefGoogle Scholar
  47. 47.
    Moyer JR, Brown TH (2002) Patch-clamp techniques applied to brain slices. Patch-clamp analysis. Humana Press, Totowa, NJ, pp 135–194Google Scholar
  48. 48.
    Davie JT, Kole MHP, Letzkus JJ et al (2006) Dendritic patch-clamp recording. Nat Protoc 1:1235–1247. doi: 10.1038/nprot.2006.164 PubMedCrossRefGoogle Scholar
  49. 49.
    Kirov SA, Petrak LJ, Fiala JC, Harris KM (2004) Dendritic spines disappear with chilling but proliferate excessively upon rewarming of mature hippocampus. Neuroscience 127:69–80. doi: 10.1016/j.neuroscience.2004.04.053 PubMedCrossRefGoogle Scholar
  50. 50.
    Feig S, Lipton P (1990) N-methyl-D-aspartate receptor activation and Ca2+ account for poor pyramidal cell structure in hippocampal slices. J Neurochem 55:473–483PubMedCrossRefGoogle Scholar
  51. 51.
    Ganong AH, Lanthorn TH, Cotman CW (1983) Kynurenic acid inhibits synaptic and acidic amino acid-induced responses in the rat hippocampus and spinal cord. Brain Res 273:170–174PubMedCrossRefGoogle Scholar
  52. 52.
    Aghajanian GK, Rasmussen K (1989) Intracellular studies in the facial nucleus illustrating a simple new method for obtaining viable motoneurons in adult rat brain slices. Synapse 3:331–338. doi: 10.1002/syn.890030406 PubMedCrossRefGoogle Scholar
  53. 53.
    Rothman SM (1985) The neurotoxicity of excitatory amino acids is produced by passive chloride influx. J Neurosci 5:1483–1489PubMedGoogle Scholar
  54. 54.
    Kuenzi FM, Fitzjohn SM, Morton RA et al (2000) Reduced long-term potentiation in hippocampal slices prepared using sucrose-based artificial cerebrospinal fluid. J Neurosci Methods 100:117–122PubMedCrossRefGoogle Scholar
  55. 55.
    Magee JC, Avery RB, Christie BR, Johnston D (1996) Dihydropyridine-sensitive, voltage-gated Ca2+ channels contribute to the resting intracellular Ca2+ concentration of hippocampal CA1 pyramidal neurons. J Neurophysiol 76:3460–3470PubMedGoogle Scholar
  56. 56.
    Dodt H-U, Zieglgänsberger W (1990) Visualizing unstained neurons in living brain slices by infrared DIC-videomicroscopy. Brain Res 537:333–336. doi: 10.1016/0006-8993(90)90380-T PubMedCrossRefGoogle Scholar
  57. 57.
    Dodt H-U, Frick A, Kampe K, Zieglgänsberger W (1998) NMDA and AMPA receptors on neocortical neurons are differentially distributed. Eur J Neurosci 10:3351–3357. doi: 10.1046/j.1460-9568.1998.00338.x PubMedCrossRefGoogle Scholar
  58. 58.
    Spruston N, Stuart G, Hausser M (2007) Dendritic integration. In: Stuart GJ, Spruston N, Häusser M (eds) Dendrites, 2nd edn. Oxford University Press, Oxford, pp 351–399Google Scholar
  59. 59.
    Robinson HPC, Kawai N (1993) Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. J Neurosci Methods 49:157–165. doi: 10.1016/0165-0270(93)90119-C PubMedCrossRefGoogle Scholar
  60. 60.
    Sharp AA, O’Neil MB, Abbott LF, Marder E (1993) The dynamic clamp: artificial conductances in biological neurons. Trends Neurosci 16:389–394. doi: 10.1016/0166-2236(93)90004-6 PubMedCrossRefGoogle Scholar
  61. 61.
    Prinz AA, Abbott LF, Marder E (2004) The dynamic clamp comes of age. Trends Neurosci 27:218–224. doi: 10.1016/j.tins.2004.02.004 PubMedCrossRefGoogle Scholar
  62. 62.
    Gasparini S, Migliore M, Magee JC (2004) On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J Neurosci 24:11046–11056. doi: 10.1523/JNEUROSCI.2520-04.2004 PubMedCrossRefGoogle Scholar
  63. 63.
    Ledergerber D, Larkum ME (2010) Properties of layer 6 pyramidal neuron apical dendrites. J Neurosci 30:13031–13044. doi: 10.1523/JNEUROSCI.2254-10.2010 PubMedCrossRefGoogle Scholar
  64. 64.
    Nevian T, Larkum ME, Polsky A, Schiller J (2007) Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat Neurosci 10:206–214. doi: 10.1038/nn1826 PubMedCrossRefGoogle Scholar
  65. 65.
    Colbert CM, Johnston D (1998) Protein kinase C activation decreases activity-dependent attenuation of dendritic Na + current in hippocampal CA1 pyramidal neurons. J Neurophysiol 79:491–495PubMedGoogle Scholar
  66. 66.
    Gasparini S, Magee JC (2002) Phosphorylation-dependent differences in the activation properties of distal and proximal dendritic Na + channels in rat CA1 hippocampal neurons. J Physiol 541:665–672. doi: 10.1113/jphysiol.2002.020503 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Andrasfalvy BK, Magee JC (2001) Distance-dependent increase in AMPA receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons. J Neurosci 21:9151–9159PubMedGoogle Scholar
  68. 68.
    Horn R, Marty A (1988) Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol 92:145–159PubMedCrossRefGoogle Scholar
  69. 69.
    Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387:869–875. doi: 10.1038/43119 PubMedCrossRefGoogle Scholar
  70. 70.
    Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26PubMedCrossRefGoogle Scholar
  71. 71.
    Ashley CC, Ridgway EB (1968) Simultaneous recording of membrane potential, calcium transient and tension in single muscle fibers. Nature 219:1168–1169PubMedCrossRefGoogle Scholar
  72. 72.
    Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239PubMedCrossRefGoogle Scholar
  73. 73.
    Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19:2396–2404PubMedCrossRefGoogle Scholar
  74. 74.
    Gordon U, Polsky A, Schiller J (2006) Plasticity compartments in basal dendrites of neocortical pyramidal neurons. J Neurosci 26:12717–12726. doi: 10.1523/JNEUROSCI.3502-06.2006
  75. 75.
    Grienberger C, Chen X, Konnerth A (2014) NMDA receptor-dependent multidendrite Ca(2+) spikes required for hippocampal burst firing in vivo. Neuron 81:1274–1281. doi: 10.1016/j.neuron.2014.01.014 PubMedCrossRefGoogle Scholar
  76. 76.
    Hill DN, Varga Z, Jia H et al (2013) Multibranch activity in basal and tuft dendrites during firing of layer 5 cortical neurons in vivo. Proc Natl Acad Sci U S A 110:13618–13623. doi: 10.1073/pnas.1312599110 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Jia H, Rochefort NL, Chen X, Konnerth A (2010) Dendritic organization of sensory input to cortical neurons in vivo. Nature 464:1307–1312. doi: 10.1038/nature08947 PubMedCrossRefGoogle Scholar
  78. 78.
    Larkum ME, Waters J, Sakmann B, Helmchen F (2007) Dendritic spikes in apical dendrites of neocortical layer 2/3 pyramidal neurons. J Neurosci 27:8999–9008. doi: 10.1523/JNEUROSCI.1717-07.2007 PubMedCrossRefGoogle Scholar
  79. 79.
    Schiller J, Major G, Koester HJ, Schiller Y (2000) NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404:285–289. doi: 10.1038/35005094 PubMedCrossRefGoogle Scholar
  80. 80.
    Varga Z, Jia H, Sakmann B, Konnerth A (2011) Dendritic coding of multiple sensory inputs in single cortical neurons in vivo. Proc Natl Acad Sci U S A 108:15420–15425. doi: 10.1073/pnas.1112355108 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Takahashi H, Magee JC (2009) Pathway interactions and synaptic plasticity in the dendritic tuft regions of CA1 pyramidal neurons. Neuron 62:102–111. doi: 10.1016/j.neuron.2009.03.007 PubMedCrossRefGoogle Scholar
  82. 82.
    Holthoff K, Kovalchuk Y, Konnerth A (2006) Dendritic spikes and activity-dependent synaptic plasticity. Cell Tissue Res 326:369–377. doi: 10.1007/s00441-006-0263-8 PubMedCrossRefGoogle Scholar
  83. 83.
    Losonczy A, Makara JK, Magee JC (2008) Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452:436–441. doi: 10.1038/nature06725 PubMedCrossRefGoogle Scholar
  84. 84.
    Gasparini S, Losonczy A, Chen X et al (2007) Associative pairing enhances action potential back-propagation in radial oblique branches of CA1 pyramidal neurons. J Physiol 580:787–800. doi: 10.1113/jphysiol.2006.121343 PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Harnett MT, Makara JK, Spruston N et al (2012) Synaptic amplification by dendritic spines enhances input cooperativity. Nature 491:599–602. doi: 10.1038/nature11554 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Murayama M, Pérez-Garci E, Nevian T et al (2009) Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature 457:1137–1141. doi: 10.1038/nature07663 PubMedCrossRefGoogle Scholar
  87. 87.
    Waters J, Helmchen F (2004) Boosting of action potential backpropagation by neocortical network activity in vivo. J Neurosci 24:11127–11136. doi: 10.1523/JNEUROSCI.2933-04.2004 PubMedCrossRefGoogle Scholar
  88. 88.
    Waters J, Larkum M, Sakmann B, Helmchen F (2003) Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. J Neurosci 23:8558–8567PubMedGoogle Scholar
  89. 89.
    Miyawaki A, Llopis J, Heim R et al (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887. doi: 10.1038/42264 PubMedCrossRefGoogle Scholar
  90. 90.
    Dreosti E, Odermatt B, Dorostkar MM, Lagnado L (2009) A genetically encoded reporter of synaptic activity in vivo. Nat Methods 6:883–889. doi: 10.1038/nmeth.1399 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Margolis DJ, Lütcke H, Schulz K et al (2012) Reorganization of cortical population activity imaged throughout long-term sensory deprivation. Nat Neurosci 15:1539–1546. doi: 10.1038/nn.3240 PubMedCrossRefGoogle Scholar
  92. 92.
    Harnett MT, Xu N-L, Magee JC, Williams SR (2013) Potassium channels control the interaction between active dendritic integration compartments in layer 5 cortical pyramidal neurons. Neuron 79:516–529. doi: 10.1016/j.neuron.2013.06.005 PubMedCrossRefGoogle Scholar
  93. 93.
    Akerboom J, Chen T-W, Wardill TJ et al (2012) Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci 32:13819–13840. doi: 10.1523/JNEUROSCI.2601-12.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Mao T, O’Connor DH, Scheuss V et al (2008) Characterization and subcellular targeting of GCaMP-type genetically-encoded calcium indicators. PLoS One 3:e1796. doi: 10.1371/journal.pone.0001796 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Chen T-W, Wardill TJ, Sun Y et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300. doi: 10.1038/nature12354 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Dittgen T, Nimmerjahn A, Komai S et al (2004) Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc Natl Acad Sci U S A 101:18206–18211. doi: 10.1073/pnas.0407976101 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Monahan PE, Samulski RJ (2000) Adeno-associated virus vectors for gene therapy: more pros than cons? Mol Med Today 6:433–440PubMedCrossRefGoogle Scholar
  98. 98.
    Minta A, Tsien RY (1989) Fluorescent indicators for cytosolic sodium. J Biol Chem 264:19449–19457PubMedGoogle Scholar
  99. 99.
    Callaway JC, Ross WN (1997) Spatial distribution of synaptically activated sodium concentration changes in cerebellar Purkinje neurons. J Neurophysiol 77:145–152PubMedGoogle Scholar
  100. 100.
    Knöpfel T, Anchisi D, Alojado ME et al (2000) Elevation of intradendritic sodium concentration mediated by synaptic activation of metabotropic glutamate receptors in cerebellar Purkinje cells. Eur J Neurosci 12:2199–2204PubMedCrossRefGoogle Scholar
  101. 101.
    Lasser-Ross N, Ross WN (1992) Imaging voltage and synaptically activated sodium transients in cerebellar Purkinje cells. Proc Biol Sci 247:35–39. doi: 10.1098/rspb.1992.0006 PubMedCrossRefGoogle Scholar
  102. 102.
    Mittmann T, Linton SM, Schwindt P, Crill W (1997) Evidence for persistent Na + current in apical dendrites of rat neocortical neurons from imaging of Na + -sensitive dye. J Neurophysiol 78:1188–1192PubMedGoogle Scholar
  103. 103.
    Myoga MH, Beierlein M, Regehr WG (2009) Somatic spikes regulate dendritic signaling in small neurons in the absence of backpropagating action potentials. J Neurosci 29:7803–7814. doi: 10.1523/JNEUROSCI.0030-09.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Rose CR, Kovalchuk Y, Eilers J, Konnerth A (1999) Two-photon Na + imaging in spines and fine dendrites of central neurons. Pflügers Arch 439:201–207PubMedGoogle Scholar
  105. 105.
    Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544. doi: 10.1146/annurev.biochem.67.1.509 PubMedCrossRefGoogle Scholar
  106. 106.
    Holtmaat A, Bonhoeffer T, Chow DK et al (2009) Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc 4:1128–1144. doi: 10.1038/nprot.2009.89 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Zuo Y, Yang G, Kwon E, Gan W-B (2005) Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 436:261–265. doi: 10.1038/nature03715 PubMedCrossRefGoogle Scholar
  108. 108.
    Liston C, Cichon JM, Jeanneteau F et al (2013) Circadian glucocorticoid oscillations promote learning-dependent synapse formation and maintenance. Nat Neurosci 16:698–705. doi: 10.1038/nn.3387 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Xu T, Yu X, Perlik AJ et al (2009) Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462:915–919. doi: 10.1038/nature08389 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Chen JL, Villa KL, Cha JW et al (2012) Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex. Neuron 74:361–373. doi: 10.1016/j.neuron.2012.02.030 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Druckmann S, Feng L, Lee B et al (2014) Structured synaptic connectivity between hippocampal regions. Neuron 81:629–640. doi: 10.1016/j.neuron.2013.11.026 PubMedCrossRefGoogle Scholar
  112. 112.
    Kim J, Zhao T, Petralia RS et al (2012) mGRASP enables mapping mammalian synaptic connectivity with light microscopy. Nat Methods 9:96–102. doi: 10.1038/nmeth.1784 CrossRefGoogle Scholar
  113. 113.
    Kameda H, Furuta T, Matsuda W et al (2008) Targeting green fluorescent protein to dendritic membrane in central neurons. Neurosci Res 61:79–91. doi: 10.1016/j.neures.2008.01.014 PubMedCrossRefGoogle Scholar
  114. 114.
    Gasparini S (2011) Distance- and activity-dependent modulation of spike back-propagation in layer V pyramidal neurons of the medial entorhinal cortex. J Neurophysiol 105:1372–1379. doi: 10.1152/jn.00014.2010 PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Nevian T, Helmchen F (2007) Calcium indicator loading of neurons using single-cell electroporation. Pflügers Arch 454:675–688. doi: 10.1007/s00424-007-0234-2 PubMedCrossRefGoogle Scholar
  116. 116.
    Silver RA, Whitaker M, Bolsover SR (1992) Intracellular ion imaging using fluorescent dyes: artefacts and limits to resolution. Pflügers Arch 420:595–602PubMedCrossRefGoogle Scholar
  117. 117.
    Palmer LM, Schulz JM, Murphy SC et al (2012) The cellular basis of GABA(B)-mediated interhemispheric inhibition. Science 335:989–993. doi: 10.1126/science.1217276 PubMedCrossRefGoogle Scholar
  118. 118.
    Reits EA, Neefjes JJ (2001) From fixed to FRAP: measuring protein mobility and activity in living cells. Nat Cell Biol 3:E145–E147. doi: 10.1038/35078615 PubMedCrossRefGoogle Scholar
  119. 119.
    Majewska A, Tashiro A, Yuste R (2000) Regulation of spine calcium dynamics by rapid spine motility. J Neurosci 20:8262–8268PubMedGoogle Scholar
  120. 120.
    Svoboda K, Tank DW, Denk W (1996) Direct measurement of coupling between dendritic spines and shafts. Science 272:716–719PubMedCrossRefGoogle Scholar
  121. 121.
    Antic SD (2003) Action potentials in basal and oblique dendrites of rat neocortical pyramidal neurons. J Physiol 550:35–50. doi: 10.1113/jphysiol.2002.033746 PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Djurisic M, Popovic M, Carnevale N, Zecevic D (2008) Functional structure of the mitral cell dendritic tuft in the rat olfactory bulb. J Neurosci 28:4057–4068. doi: 10.1523/JNEUROSCI.5296-07.2008 PubMedCrossRefGoogle Scholar
  123. 123.
    Milojkovic BA, Zhou W-L, Antic SD (2007) Voltage and calcium transients in basal dendrites of the rat prefrontal cortex. J Physiol 585:447–468. doi: 10.1113/jphysiol.2007.142315 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Palmer LM, Stuart GJ (2009) Membrane potential changes in dendritic spines during action potentials and synaptic input. J Neurosci 29:6897–6903. doi: 10.1523/JNEUROSCI.5847-08.2009 PubMedCrossRefGoogle Scholar
  125. 125.
    Ross WN, Werman R (1987) Mapping calcium transients in the dendrites of Purkinje cells from the guinea-pig cerebellum in vitro. J Physiol 389:319–336PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Fine A, Amos WB, Durbin RM, McNaughton PA (1988) Confocal microscopy: applications in neurobiology. Trends Neurosci 11:346–351PubMedCrossRefGoogle Scholar
  127. 127.
    Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76PubMedCrossRefGoogle Scholar
  128. 128.
    Göppert-Mayer M (1931) Über Elementarakte mit zwei Quantensprüngen. Ann Phys 401:273–294. doi: 10.1002/andp.19314010303 CrossRefGoogle Scholar
  129. 129.
    Gentet LJ, Kremer Y, Taniguchi H et al (2012) Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex. Nat Neurosci 15:607–612. doi: 10.1038/nn.3051 PubMedCrossRefGoogle Scholar
  130. 130.
    Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940. doi: 10.1038/nmeth818 PubMedCrossRefGoogle Scholar
  131. 131.
    Wilt BA, Burns LD, Wei Ho ET et al (2009) Advances in light microscopy for neuroscience. Annu Rev Neurosci 32:435–506. doi: 10.1146/annurev.neuro.051508.135540 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Sosinsky GE, Giepmans BNG, Deerinck TJ et al (2007) Markers for correlated light and electron microscopy. Methods Cell Biol 79:575–591. doi: 10.1016/S0091-679X(06)79023-9 PubMedCrossRefGoogle Scholar
  133. 133.
    Palay SL, Palade GE (1955) The fine structure of neurons. J Biophys Biochem Cytol 1:69–88PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Palay SL (1956) Synapses in the central nervous system. J Biophys Biochem Cytol 2:193–202PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    De Robertis ED, Bennett HS (1955) Some features of the submicroscopic morphology of synapses in frog and earthworm. J Biophys Biochem Cytol 1:47–58PubMedCentralCrossRefGoogle Scholar
  136. 136.
    Harris KM, Weinberg RJ (2012) Ultrastructure of synapses in the mammalian brain. Cold Spring Harb Perspect Biol. 4(5). pii: a005587. doi:  10.1101/cshperspect.a005587
  137. 137.
    Denk W, Horstmann H (2004) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2:e329. doi: 10.1371/journal.pbio.0020329 PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782PubMedCrossRefGoogle Scholar
  139. 139.
    Tønnesen J, Nägerl UV (2013) Superresolution imaging for neuroscience. Exp Neurol 242:33–40. doi: 10.1016/j.expneurol.2012.10.004 PubMedCrossRefGoogle Scholar
  140. 140.
    Ding JB, Takasaki KT, Sabatini BL (2009) Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy. Neuron 63:429–437. doi: 10.1016/j.neuron.2009.07.011 PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Nägerl UV, Willig KI, Hein B et al (2008) Live-cell imaging of dendritic spines by STED microscopy. Proc Natl Acad Sci U S A 105:18982–18987. doi: 10.1073/pnas.0810028105 PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Takasaki KT, Ding JB, Sabatini BL (2013) Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy. Biophys J 104:770–777. doi: 10.1016/j.bpj.2012.12.053 PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Tønnesen J, Katona G, Rózsa B, Nägerl UV (2014) Spine neck plasticity regulates compartmentalization of synapses. Nat Neurosci 17:678–685. doi: 10.1038/nn.3682 PubMedCrossRefGoogle Scholar
  144. 144.
    Stuart G, Spruston N, Hausser M (2007) Dendrites, 2nd edn. Oxford University Press, OxfordCrossRefGoogle Scholar
  145. 145.
    Silver R, Farrant M (2007) Neurotransmitter-gated channels in dendrites. In: Stuart GJ, Spruston N, Hausser M (eds) Dendrites, 2nd edn. Oxford University Press, Oxford, pp 190–223Google Scholar
  146. 146.
    Carter A, Sabatini B (2007) Spine calcium signaling. In: Stuart GJ, Spruston N, Häusser M (eds) Dendrites, 2nd edn. Oxford University Press, Oxford, pp 287–308CrossRefGoogle Scholar
  147. 147.
    Helmchen F (2007) Biochemical compartmentalization in dendrites. In: Stuart GJ, Spruston N, Häusser M (eds) Dendrites, 2nd edn. Oxford University Press, Oxford, pp 251–285CrossRefGoogle Scholar
  148. 148.
    Frick A, Magee J, Johnston D (2004) LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nat Neurosci 7:126–135. doi: 10.1038/nn1178 PubMedCrossRefGoogle Scholar
  149. 149.
    Mainen ZF, Abbott LF (2007) Functional plasticity at dendritic synapses. In: Stuart GJ, Spruston N, Häusser M (eds) Dendrites, 2nd edn. Oxford University Press, Oxford, pp 465–498CrossRefGoogle Scholar
  150. 150.
    Makara JK, Losonczy A, Wen Q, Magee JC (2009) Experience-dependent compartmentalized dendritic plasticity in rat hippocampal CA1 pyramidal neurons. Nat Neurosci 12:1485–1487. doi: 10.1038/nn.2428 PubMedCrossRefGoogle Scholar
  151. 151.
    Bernard C, Shah M, Johnston D (2007) Dendrites and disease. In: Stuart GJ, Spruston N, Hausser M (eds) Dendrites, 2nd edn. Oxford University Press, Oxford, pp 531–550CrossRefGoogle Scholar
  152. 152.
    Palmer LM (2014) Dendritic integration in pyramidal neurons during network activity and disease. Brain Res Bull 103:2–10. doi: 10.1016/j.brainresbull.2013.09.010 PubMedCrossRefGoogle Scholar
  153. 153.
    Deisseroth K, Schnitzer MJ (2013) Engineering approaches to illuminating brain structure and dynamics. Neuron 80:568–577. doi: 10.1016/j.neuron.2013.10.032 PubMedCrossRefGoogle Scholar
  154. 154.
    Oheim M, van’t Hoff M, Feltz A et al (2014) New red-fluorescent calcium indicators for optogenetics, photoactivation and multi-color imaging. Biochim Biophys Acta 1843:2284–2306. doi: 10.1016/j.bbamcr.2014.03.010 PubMedCrossRefGoogle Scholar
  155. 155.
    Cao G, Platisa J, Pieribone VA et al (2013) Genetically targeted optical electrophysiology in intact neural circuits. Cell 154:904–913. doi: 10.1016/j.cell.2013.07.027 PubMedCrossRefGoogle Scholar
  156. 156.
    Garaschuk O, Griesbeck O, Konnerth A (2007) Troponin C-based biosensors: a new family of genetically encoded indicators for in vivo calcium imaging in the nervous system. Cell Calcium 42:351–361. doi: 10.1016/j.ceca.2007.02.011 PubMedCrossRefGoogle Scholar
  157. 157.
    Kitamura K, Häusser M (2011) Dendritic calcium signaling triggered by spontaneous and sensory-evoked climbing fiber input to cerebellar Purkinje cells in vivo. J Neurosci 31:10847–10858. doi: 10.1523/JNEUROSCI.2525-10.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Murayama M, Larkum ME (2009) Enhanced dendritic activity in awake rats. Proc Natl Acad Sci U S A 106:20482–20486. doi: 10.1073/pnas.0910379106 PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Major G, Polsky A, Denk W et al (2008) Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. J Neurophysiol 99:2584–2601. doi: 10.1152/jn.00011.2008 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Neuroscience Center of ExcellenceLSU Health Sciences CenterNew OrleansUSA
  2. 2.Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneMelbourneAustralia

Personalised recommendations