Advertisement

Studying Sodium Channel Gating in Heterologous Expression Systems

  • Jannis E. Meents
  • Angelika LampertEmail author
Protocol
Part of the Neuromethods book series (NM, volume 113)

Abstract

Voltage-gated sodium channels (Navs) are essential for the initiation and propagation of action potentials in most excitable tissues, such as neurons or cardiac myocytes. Mutations in Navs are linked to several severe conditions, such as pain syndromes, epilepsy, and cardiac arrhythmias and these ion channels are therefore among the most promising drug targets. The development of Nav modulators is complicated by the intricate gating mechanisms of these ion channels. They activate extremely quickly and subsequently inactivate equally fast. There are several additional gating modes that are physiologically relevant and that may be involved in the pathophysiology of numerous conditions, such as a variety of pain syndromes.

Whole-cell voltage clamp is a valuable technique to study the different gating modes of Navs and their possible physiological roles. It can be conducted in a variety of tissue preparations; however, for the basic investigation of Nav activity, heterologous expression systems offer numerous advantages. The fast kinetics of Nav activity make it difficult to accurately measure these events. The following chapter therefore aims to provide the necessary steps and protocols in order to study Nav gating.

Key words

Voltage-gated sodium channel Nav Patch-clamp electrophysiology Voltage clamp HEK cells 

References

  1. 1.
    Catterall WA, Goldin AL, Waxman SG (2005) International union of pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 57:397–409. doi: 10.1124/pr.57.4.4 CrossRefPubMedGoogle Scholar
  2. 2.
    Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jiang B et al (2002) Endogenous KV channels in human embryonic kidney (HEK-293) cells. Mol Cell Biochem 238:69–79. doi: 10.1023/A:1019907104763 CrossRefPubMedGoogle Scholar
  4. 4.
    Berjukow S et al (1996) Endogenous calcium channels in human embryonic kidney (HEK293) cells. Br J Pharmacol 118:748–754CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cummins TR et al (1993) Functional consequences of a Na + channel mutation causing hyperkalemic periodic paralysis. Neuron 10:667–678. doi: 10.1016/0896-6273(93)90168-Q CrossRefPubMedGoogle Scholar
  6. 6.
    He B, Soderlund DM (2010) Human embryonic kidney (HEK293) cells express endogenous voltage-gated sodium currents and Nav1.7 sodium channels. Neurosci Lett 469:268. doi: 10.1016/j.neulet.2009.12.012 CrossRefPubMedGoogle Scholar
  7. 7.
    Moran O, Nizzari M, Conti F (2000) Endogenous expression of the beta1A sodium channel subunit in HEK-293 cells. FEBS Lett 473:132–134CrossRefPubMedGoogle Scholar
  8. 8.
    Cummins TR et al (2001) Nav1.3 sodium channels: rapid repriming and slow closed-state inactivation display quantitative differences after expression in a mammalian cell line and in spinal sensory neurons. J Neurosci 21:5952–5961PubMedGoogle Scholar
  9. 9.
    Leffler A et al (2005) Pharmacological properties of neuronal TTX-resistant sodium channels and the role of a critical serine pore residue. Pflugers Arch 451:454–463. doi: 10.1007/s00424-005-1463-x CrossRefPubMedGoogle Scholar
  10. 10.
    Vanoye CG et al (2013) Mechanism of sodium channel NaV1.9 potentiation by G-protein signaling. J Gen Physiol 141:193–202. doi: 10.1085/jgp.201210919 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Qu W et al (2000) Very negative potential for half-inactivation of, and effects of anions on, voltage-dependent sodium currents in acutely isolated rat olfactory receptor neurons. J Membr Biol 175:123–138. doi: 10.1007/s002320001061 CrossRefPubMedGoogle Scholar
  12. 12.
    Van Petegem F, Lobo PA, Ahern CA (2012) Seeing the forest through the trees: towards a unified view on physiological calcium regulation of voltage-gated sodium channels. Biophys J 103:2243–2251. doi: 10.1016/j.bpj.2012.10.020 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Saab CY, Cummins TR, Waxman SG (2003) GTPγS increases Nav1.8 current in small-diameter dorsal root ganglia neurons. Exp Brain Res 152:415–419. doi: 10.1007/s00221-003-1565-7 CrossRefPubMedGoogle Scholar
  14. 14.
    Coste B et al (2004) Gating and modulation of presumptive NaV1.9 channels in enteric and spinal sensory neurons. Mol Cell Neurosci 26:123–134. doi: 10.1016/j.mcn.2004.01.015 CrossRefPubMedGoogle Scholar
  15. 15.
    Sternweis PC, Gilman AG (1982) Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride. Proc Natl Acad Sci U S A 79:4888–4891CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Todt H et al (1999) Ultra-slow inactivation in mu1 Na + channels is produced by a structural rearrangement of the outer vestibule. Biophys J 76:1335–1345CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ben-Johny M et al (2014) Conservation of Ca2+/calmodulin regulation across Na and Ca2+ channels. Cell 157:1657–1670. doi: 10.1016/j.cell.2014.04.035 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Levis RA, Rae JL (2007) Technology of patch-clamp electrodes. In: Walz W (ed) Patch-clamp analysis: advanced techniques, 2nd edn. Humana Press Inc., Totowa, NJ, pp 1–34CrossRefGoogle Scholar
  19. 19.
    Lampert A et al (2010) Sodium channelopathies and pain. Pflugers Arch 460:249–263. doi: 10.1007/s00424-009-0779-3 CrossRefPubMedGoogle Scholar
  20. 20.
    Molleman A (2003) Patch clamping: an introductory guide to patch clamp electrophysiology, 1st edn. John Wiley & Sons Ltd, Chichester, UKGoogle Scholar
  21. 21.
    Sontheimer H, Olsen ML (2007) Whole-cell patch-clamp recordings. In: Walz W (ed) Patch-clamp analysis: advanced techniques, 2nd edn. Humana Press Inc., Totowa, NJ, pp 35–68CrossRefGoogle Scholar
  22. 22.
    Armstrong CM, Bezanilla F (1975) Currents associated with the ionic gating structures in nerve membrane. Ann N Y Acad Sci 264:265–277. doi: 10.1111/j.1749-6632.1975.tb31488.x CrossRefPubMedGoogle Scholar
  23. 23.
    Peters CH, Ruben PC (2014) Introduction to sodium channels. In: Ruben PC (ed) Volt. Gated sodium channels. Springer, Berlin, pp 1–6CrossRefGoogle Scholar
  24. 24.
    Silva J (2014) Slow inactivation of Na + channels. In: Ruben PC (ed) Volt. Gated sodium channels. Springer, Berlin, pp 33–49CrossRefGoogle Scholar
  25. 25.
    Goldin AL (2003) Mechanisms of sodium channel inactivation. Curr Opin Neurobiol 13:284–290. doi: 10.1016/S0959-4388(03)00065-5 CrossRefPubMedGoogle Scholar
  26. 26.
    O’Reilly JP et al (1999) Comparison of slow inactivation in human heart and rat skeletal muscle Na + channel chimaeras. J Physiol 515:61–73. doi: 10.1111/j.1469-7793.1999.061ad.x CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hilber K et al (2001) The selectivity filter of the voltage-gated sodium channel is involved in channel activation. J Biol Chem 276:27831–27839. doi: 10.1074/jbc.M101933200 CrossRefPubMedGoogle Scholar
  28. 28.
    Featherstone DE, Richmond JE, Ruben PC (1996) Interaction between fast and slow inactivation in Skm1 sodium channels. Biophys J 71:3098–3109CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Richmond JE et al (1998) Slow inactivation in human cardiac sodium channels. Biophys J 74:2945–2952. doi: 10.1016/S0006-3495(98)78001-4 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wang S-Y et al (2003) Tryptophan scanning of D1S6 and D4S6 C-termini in voltage-gated sodium channels. Biophys J 85:911–920. doi: 10.1016/S0006-3495(03)74530-5 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Armstrong CM (2006) Na channel inactivation from open and closed states. Proc Natl Acad Sci 103:17991–17996. doi: 10.1073/pnas.0607603103 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lampert A, Eberhardt M, Waxman SG (2014) Altered sodium channel gating as molecular basis for pain: contribution of activation, inactivation, and resurgent currents. In: Ruben PC (ed) Volt. Gated sodium channels. Springer, Berlin, pp 91–110CrossRefGoogle Scholar
  33. 33.
    Grieco TM et al (2005) Open-channel block by the cytoplasmic tail of sodium channel β4 as a mechanism for resurgent sodium current. Neuron 45:233–244. doi: 10.1016/j.neuron.2004.12.035 CrossRefPubMedGoogle Scholar
  34. 34.
    Wang GK, Edrich T, Wang S-Y (2006) Time-dependent block and resurgent tail currents induced by mouse β4154–167 peptide in cardiac Na + channels. J Gen Physiol 127:277–289. doi: 10.1085/jgp.200509399 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lewis AH, Raman IM (2011) Cross-species conservation of open-channel block by Na channel β4 peptides reveals structural features required for resurgent Na current. J Neurosci 31:11527–11536. doi: 10.1523/JNEUROSCI.1428-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Raman IM, Bean BP (1997) Resurgent sodium current and action potential formation in dissociated cerebellar purkinje neurons. J Neurosci 17:4517–4526PubMedGoogle Scholar
  37. 37.
    Eberhardt M et al (2014) Inherited pain: sodium channel Nav1.7 A1632T mutation causes erythromelalgia due to a shift of fast inactivation. J Biol Chem 289:1971–1980. doi: 10.1074/jbc.M113.502211 CrossRefPubMedGoogle Scholar
  38. 38.
    Huth T et al (2011) β-Site APP-cleaving enzyme 1 (BACE1) cleaves cerebellar Na + channel β4-subunit and promotes Purkinje cell firing by slowing the decay of resurgent Na + current. Pflugers Arch 461:355–371. doi: 10.1007/s00424-010-0913-2 CrossRefPubMedGoogle Scholar
  39. 39.
    Cummins TR, Howe JR, Waxman SG (1998) Slow closed-state inactivation: a novel mechanism underlying ramp currents in cells expressing the hNE/PN1 sodium channel. J Neurosci 18:9607–9619PubMedGoogle Scholar
  40. 40.
    Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Sunderland, MAGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of PhysiologyUniversity Hospital RWTH AachenAachenGermany

Personalised recommendations