Creating and Constraining Compartmental Models of Neurons Using Experimental Data

  • Stefanos S. Stefanou
  • George Kastellakis
  • Panayiota PoiraziEmail author
Part of the Neuromethods book series (NM, volume 113)


In order to understand the information processing at the level of individual nerve cells, detailed information is required about the complex interactions between the anatomical structure of the neurons, their physiological properties, and synaptic input. Embodying such information in a formal theoretical model is useful as a predictor as it can simulate the electrical behavior of neurons in ways or conditions that may not be possible experimentally. In order for a model neuron to perform as closely as a real neuron, it needs to be constrained against all the available experimental data. The calibration of the parameters in each compartment requires a careful examination of the relevant literature, experimental evidence, as well as the intuition of the experimenter. However the hand tuning of model parameters can be extremely tricky due to the increased complexity of today’s compartmental neuron models. Consequently the choices of structural model and the level of detail at which these models are constructed are critical considerations and because of our limited knowledge of the system the predictive value of each model is also limited. Therefore, a neuronal model is as good predictor as it was created to be. In this chapter we will address how a realistic conductance-based compartmental model is constructed and what are the common restrictions that prevent a model from reproducing the desired biological dynamics.

Key words

Cable theory Compartmental model Morphology Ion channels Software Active properties Passive properties Synapse Optimisation Neural network 


  1. 1.
    Rall W (1959) Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol 1:491–527CrossRefPubMedGoogle Scholar
  2. 2.
    Rall W (1957) Membrane time constant of motoneurons. Science 126:454CrossRefPubMedGoogle Scholar
  3. 3.
    Rall W (1960) Membrane potential transients and membrane time constant of motoneurons. Exp Neurol 2:503–532CrossRefPubMedGoogle Scholar
  4. 4.
    Thomson W (1854) On the Theory of the Electric Telegraph. Proceedings of the Royal Society of London (1854–1905) 7:382–399Google Scholar
  5. 5.
    Coombs JS, Eccles JC, Fatt P (1955) The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potential. J Physiol 130:326–374CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    De Schutter E, Bower J (1994) An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. J Neurophysiol 71:375–400PubMedGoogle Scholar
  7. 7.
    Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366CrossRefPubMedGoogle Scholar
  8. 8.
    Lux H, Schubert P, Kreutzberg G (1970) Direct matching of morphological and electrophysiological data in cat spinal motoneurons. In: Andersen P, Jansen JKS (eds) Excitatory synaptic mechanisms. Universitetsforlaget, Norway, pp 189–198Google Scholar
  9. 9.
    Barrett JN, Crill WE (1974) Specific membrane properties of cat motoneurones. J Physiol 239:301–324CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rodriguez A, Ehlenberger D, Kelliher K et al (2003) Automated reconstruction of three-dimensional neuronal morphology from laser scanning microscopy images. Methods 30:94–105CrossRefPubMedGoogle Scholar
  11. 11.
    Schmitt S, Evers JF, Duch C et al (2004) New methods for the computer-assisted 3-D reconstruction of neurons from confocal image stacks. Neuroimage 23:1283–1298CrossRefPubMedGoogle Scholar
  12. 12.
    Santer RM (1989) Correlative microscopy in biology. Instrumentation and methods. J Anat 162:279, PubMedCentralGoogle Scholar
  13. 13.
    Marx M, Günter RH, Hucko W et al (2012) Improved biocytin labeling and neuronal 3D reconstruction. Nat Protoc 7:394–407CrossRefPubMedGoogle Scholar
  14. 14.
    Segev I, Rinzel J, Shepherd GM et al (1995) The theoretical foundation of dendritic function. Trends Neurosci 18:512CrossRefGoogle Scholar
  15. 15.
    Rall W (1989) Cable theory for dendritic neurons. MIT Press, Cambridge, MA, pp 9–92Google Scholar
  16. 16.
    Pinsky PF, Rinzel J (1994) Intrinsic and network rhythmogenesis in a reduced traub model for CA3 neurons. J Comput Neurosci 1:39–60CrossRefPubMedGoogle Scholar
  17. 17.
    Abrahamsson T, Cathala L, Matsui K et al (2012) Thin dendrites of cerebellar interneurons confer sublinear synaptic integration and a gradient of short-term plasticity. Neuron 73:1159–1172CrossRefPubMedGoogle Scholar
  18. 18.
    Rall W, Burke R, Holmes W (1992) Matching dendritic neuron models to experimental data. Physiol Rev 72:S159–S186PubMedGoogle Scholar
  19. 19.
    Major G, Evans JD (1994) Solutions for transients in arbitrarily branching cables: IV. Nonuniform electrical parameters. Biophys J 66:615–633CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Major G, Evans JD, Jack JJ (1993) Solutions for transients in arbitrarily branching cables: I. Voltage recording with a somatic shunt. Biophys J 65:423–449CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Destexhe A, Neubig M, Ulrich D et al (1998) Dendritic low-threshold calcium currents in thalamic relay cells. J Neurosci 18:3574–3588PubMedGoogle Scholar
  22. 22.
    Papoutsi A, Sidiropoulou K, Cutsuridis V et al (2013) Induction and modulation of persistent activity in a layer V PFC microcircuit model. Front Neural Circuits 7:161CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Traub RD, Llinás R (1977) The spatial distribution of ionic conductances in normal and axotomized motorneurons. Neuroscience 2:829–849CrossRefGoogle Scholar
  24. 24.
    De Schutter E, Angstadt JD, Calabrese RL (1993) A model of graded synaptic transmission for use in dynamic network simulations. J Neurophysiol 69:1225–1235PubMedGoogle Scholar
  25. 25.
    Korngreen A, Sakmann B (2000) Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients. J Physiol 525:621–639CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mainen ZF, Joerges J, Huguenard JR et al (1995) A model of spike initiation in neocortical pyramidal neurons. Neuron 15:1427–1439CrossRefPubMedGoogle Scholar
  27. 27.
    Poirazi P, Brannon T, Mel BW (2003) Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron 37:977–987CrossRefPubMedGoogle Scholar
  28. 28.
    Losonczy A, Magee JC (2006) Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50:291–307CrossRefPubMedGoogle Scholar
  29. 29.
    Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7:621–627CrossRefPubMedGoogle Scholar
  30. 30.
    Shepherd GM, Brayton RK, Miller JP et al (1985) Signal enhancement in distal cortical dendrites by means of interactions between active dendritic spines. Proc Natl Acad Sci U S A 82:2192–2195CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gold JI, Bear MF (1994) A model of dendritic spine Ca2+ concentration exploring possible bases for a sliding synaptic modification threshold. Proc Natl Acad Sci 91:3941–3945CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Destexhe A, Mainen ZF, Sejnowski TJ (1994) An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Comput 6:14CrossRefGoogle Scholar
  33. 33.
    Kampa BM, Clements J, Jonas P et al (2004) Kinetics of Mg2+ unblock of NMDA receptors: implications for spike-timing dependent synaptic plasticity. J Physiol 556:337–345CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gold C, Henze DA, Koch C (2007) Using extracellular action potential recordings to constrain compartmental models. J Comput Neurosci 23:39–58CrossRefPubMedGoogle Scholar
  35. 35.
    Holt GR, Koch C (1999) Electrical interactions via the extracellular potential near cell bodies. J Comput Neurosci 6:169–184CrossRefPubMedGoogle Scholar
  36. 36.
    Druckmann S, Banitt Y, Gidon A et al (2007) A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Front Neurosci 1:7–18CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Keren N, Peled N, Korngreen A (2005) Constraining compartmental models using multiple voltage recordings and genetic algorithms. J Neurophysiol 94:3730–3742CrossRefPubMedGoogle Scholar
  38. 38.
    Huys QJM, Ahrens MB, Paninski L (2006) Efficient estimation of detailed single-neuron models. J Neurophysiol 96:872–890CrossRefPubMedGoogle Scholar
  39. 39.
    Bhalla U, Bower J (1993) Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb. J Neurophysiol 69:1948–1965PubMedGoogle Scholar
  40. 40.
    Hines ML, Carnevale NT (2001) NEURON: a tool for neuroscientists. Neuroscientist 7:123–135CrossRefPubMedGoogle Scholar
  41. 41.
    Rossant C, Goodman DFM, Fontaine B et al (2011) Fitting neuron models to spike trains. Front Neurosci 5:9CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Friedrich P, Vella M, Gulyás AI et al (2014) A flexible, interactive software tool for fitting the parameters of neuronal models. Front Neuroinform 8:63CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Van Geit W, Achard P, De Schutter E (2007) Neurofitter: a parameter tuning package for a wide range of electrophysiological neuron models. Front Neuroinform 1:1PubMedPubMedCentralGoogle Scholar
  44. 44.
    Hay E, Hill S, Schürmann F et al (2011) Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS Comput Biol 7:e1002107CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Keren N, Bar-Yehuda D, Korngreen A (2009) Experimentally guided modelling of dendritic excitability in rat neocortical pyramidal neurones. J Physiol 587:1413–1437CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Almog M, Korngreen A (2014) A quantitative description of dendritic conductances and its application to dendritic excitation in layer 5 pyramidal neurons. J Neurosci 34:182–196CrossRefPubMedGoogle Scholar
  47. 47.
    Traub RD, Whittington MA, Colling SB et al (1996) Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. J Physiol 493(Pt 2):471–484CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Traub RD, Contreras D, Cunningham MO et al (2005) Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J Neurophysiol 93:2194–2232CrossRefPubMedGoogle Scholar
  49. 49.
    Konstantoudaki X (2014) Modulatory effects of inhibition on persistent activity in a cortical microcircuit model. Front Neural Circuits 8:1–15CrossRefGoogle Scholar
  50. 50.
    Durstewitz D, Gabriel T (2007) Dynamical basis of irregular spiking in NMDA-driven prefrontal cortex neurons. Cereb Cortex 17:894–908CrossRefPubMedGoogle Scholar
  51. 51.
    Papoutsi A, Sidiropoulou K, Poirazi P (2014) Dendritic nonlinearities reduce network size requirements and mediate on and off states of persistent activity in a PFC microcircuit model. PLoS Comput Biol 10:e1003764CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Markram H (2006) The blue brain project. Nat Rev Neurosci 7:153–160CrossRefPubMedGoogle Scholar
  53. 53.
    Alivisatos A, Chun M, Church G (2012) The brain activity map project and the challenge of functional connectomics. Neuron 74:970–974CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kandel ER, Markram H, Matthews PM et al (2013) Neuroscience thinks big (and collaboratively). Nat Rev Neurosci 14:659–664CrossRefPubMedGoogle Scholar
  55. 55.
    Meyer HS, Egger R, Guest JM et al (2013) Cellular organization of cortical barrel columns is whisker-specific. Proc Natl Acad Sci U S A 110:19113–19118CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Oberlaender M, de Kock CPJ, Bruno RM et al (2012) Cell type-specific three-dimensional structure of thalamocortical circuits in a column of rat vibrissal cortex. Cereb Cortex 22:2375–2391CrossRefPubMedGoogle Scholar
  57. 57.
    Mel B (1993) Synaptic integration in an excitable dendritic tree. J Neurophysiol 70:1086–1101PubMedGoogle Scholar
  58. 58.
    Poirazi P, Mel B (2001) Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron 29:779–796CrossRefPubMedGoogle Scholar
  59. 59.
    Segev I, Rall W (1988) Computational study of an excitable dendritic spine. J Neurophysiol 60:499–523PubMedGoogle Scholar
  60. 60.
    Bower JM, Beeman D (2003) The book of genesis - exploring realistic neural models with the GEneral NEural SImulation System. Genesis. Springer, New York, NYGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Stefanos S. Stefanou
    • 1
    • 2
  • George Kastellakis
    • 1
    • 2
  • Panayiota Poirazi
    • 2
    • 3
    Email author
  1. 1.Institute of Molecular Biology and Biotechnology (IMBB)Foundation for Research and Technology, Hellas (FORTH)HeraklionGreece
  2. 2.Department of BiologyUniversity of CreteHeraklionGreece
  3. 3.Computational Biology LabIMBB-FORTHHeraklionGreece

Personalised recommendations