Advertisement

Modeling the Kinetic Mechanisms of Voltage-Gated Ion Channels

  • Autoosa Salari
  • Marco A. Navarro
  • Lorin S. MilescuEmail author
Protocol
Part of the Neuromethods book series (NM, volume 113)

Abstract

From neurons to networks, the kinetic properties of voltage-gated ion channels determine specific patterns of activity. In this chapter, we discuss how experimental data can be obtained and analyzed to formulate kinetic mechanisms and estimate parameters, and how these kinetic models can be tested in live neurons using dynamic clamp. First, we introduce the Markov formalism, as applied to modeling ion channel mechanisms, and the quantitative properties of single-channel and macroscopic currents obtained in voltage-clamp experiments. Then, we discuss how to design optimal voltage-clamp protocols and how to handle experimental artifacts. Next, we review the theoretical and practical aspects of data fitting, explaining how to define and calculate the goodness of fit, how to formulate model parameters and constraints, and how to search for optimal parameters. Finally, we discuss the technical requirements for dynamic-clamp experiments and illustrate the power of this experimental-computational approach with an example.

Key words

Voltage-gated ion channels Kinetic mechanism Markov model Dynamic clamp Voltage clamp Sodium channels 

References

  1. 1.
    Hille B (2001) Ion channels of excitable membranes. Sinauer Sunderland, MAGoogle Scholar
  2. 2.
    Frank HY, Yarov-Yarovoy V, Gutman GA, Catterall WA (2005) Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol Rev 57:387–395CrossRefGoogle Scholar
  3. 3.
    Bezanilla F (2000) The voltage sensor in voltage-dependent ion channels. Physiol Rev 80:555–592PubMedGoogle Scholar
  4. 4.
    Sigworth FJ (1994) Voltage gating of ion channels. Q Rev Biophys 27:1–40PubMedCrossRefGoogle Scholar
  5. 5.
    Yellen G (1998) The moving parts of voltage-gated ion channels. Q Rev Biophys 31:239–295PubMedCrossRefGoogle Scholar
  6. 6.
    Armstrong CM, Hille B (1998) Voltage-gated ion channels and electrical excitability. Neuron 20:371–380PubMedCrossRefGoogle Scholar
  7. 7.
    Hodgkin AL, Huxley A, Katz B (1952) Measurement of current–voltage relations in the membrane of the giant axon of Loligo. J Physiol 116:424–448PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Bean BP (2007) The action potential in mammalian central neurons. Nat Rev Neurosci 8:451–465PubMedCrossRefGoogle Scholar
  9. 9.
    Richie J (1973) Energetic aspects of nerve conduction: the relationships between heat production, electrical activity and metabolism. Prog Biophys Mol Biol 26:147–187CrossRefGoogle Scholar
  10. 10.
    Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13:99–104PubMedCrossRefGoogle Scholar
  11. 11.
    Marder E, Goaillard J-M (2006) Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 7:563–574PubMedCrossRefGoogle Scholar
  12. 12.
    Prinz AA, Bucher D, Marder E (2004) Similar network activity from disparate circuit parameters. Nat Neurosci 7:1345–1352PubMedCrossRefGoogle Scholar
  13. 13.
    Harris-Warrick RM, Marder E (1991) Modulation of neural networks for behavior. Annu Rev Neurosci 14:39–57PubMedCrossRefGoogle Scholar
  14. 14.
    Getting PA (1989) Emerging principles governing the operation of neural networks. Annu Rev Neurosci 12:185–204PubMedCrossRefGoogle Scholar
  15. 15.
    Grillner S (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 4:573–586PubMedCrossRefGoogle Scholar
  16. 16.
    Harris-Warrick RM (2002) Voltage-sensitive ion channels in rhythmic motor systems. Curr Opin Neurobiol 12:646–651PubMedCrossRefGoogle Scholar
  17. 17.
    Marty A, Neher E (1995) Tight-seal whole-cell recording. In: Sakmann B, Neher E (eds) Single-channel recording, 2nd edn. Springer, New York, pp 31–52CrossRefGoogle Scholar
  18. 18.
    Milescu LS, Yamanishi T, Ptak K, Mogri MZ, Smith JC (2008) Real-time kinetic modeling of voltage-gated ion channels using dynamic clamp. Biophys J 95:66–87PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Izhikevich EM, Edelman GM (2008) Large-scale model of mammalian thalamocortical systems. Proc Natl Acad Sci U S A 105:3593–3598PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Armstrong CM (2006) Na channel inactivation from open and closed states. Proc Natl Acad Sci U S A 103:17991–17996PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Catterall WA, Raman IM, Robinson HP, Sejnowski TJ, Paulsen O (2012) The Hodgkin-Huxley heritage: from channels to circuits. J Neurosci 32:14064–14073PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hoshi T, Zagotta WN, Aldrich RW (1994) Shaker potassium channel gating. I: transitions near the open state. J Gen Physiol 103:249–278PubMedCrossRefGoogle Scholar
  24. 24.
    Zagotta WN, Hoshi T, Aldrich RW (1994) Shaker potassium channel gating. III: evaluation of kinetic models for activation. J Gen Physiol 103:321–362PubMedCrossRefGoogle Scholar
  25. 25.
    Zagotta WN, Hoshi T, Dittman J, Aldrich RW (1994) Shaker potassium channel gating. II: transitions in the activation pathway. J Gen Physiol 103:279–319PubMedCrossRefGoogle Scholar
  26. 26.
    Vandenberg CA, Bezanilla F (1991) A sodium channel gating model based on single channel, macroscopic ionic, and gating currents in the squid giant axon. Biophys J 60:1511–1533PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Schoppa NE, Sigworth FJ (1998) Activation of shaker potassium channels. III. an activation gating model for wild-type and V2 mutant channels. J Gen Physiol 111:313–342PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Schoppa NE, Sigworth FJ (1998) Activation of Shaker potassium channels. II. kinetics of the V2 mutant channel. J Gen Physiol 111:295–311PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Schoppa NE, Sigworth FJ (1998) Activation of shaker potassium channels. I Characterization of voltage-dependent transitions. J Gen Physiol 111:271–294PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Rothberg BS, Magleby KL (2000) Voltage and Ca2+ activation of single large-conductance Ca2+ −activated K+ channels described by a two-tiered allosteric gating mechanism. J Gen Physiol 116:75–99PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Box GE, Draper NR (1987) Empirical model-building and response surfaces. John Wiley & Sons, New YorkGoogle Scholar
  32. 32.
    Colquhoun D, Hawkes AG (1995) The principles of the stochastic interpretation of ion-channel mechanisms. In: Sakmann B, Neher E (eds) Single-channel recording, 2nd edn. Springer, New York, pp 397–482CrossRefGoogle Scholar
  33. 33.
    Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115CrossRefGoogle Scholar
  34. 34.
    Sigg D (2014) Modeling ion channels: past, present, and future. J Gen Physiol 144:7–26PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Colquhoun D, Hawkes AG (1995) A Q-matrix cookbook. In: Sakmann B, Neher E (eds) Single-channel recording, 2nd edn. Springer, New York, pp 589–633CrossRefGoogle Scholar
  36. 36.
    Hawkes A, Jalali A, Colquhoun D (1990) The distributions of the apparent open times and shut times in a single channel record when brief events cannot be detected. Philos Trans R Soc Lond B Biol Sci 332:511–538CrossRefGoogle Scholar
  37. 37.
    Ball FG, Sansom MS (1989) Ion-channel gating mechanisms: model identification and parameter estimation from single channel recordings. Proc R Soc Lond B Biol Sci 236:385–416PubMedCrossRefGoogle Scholar
  38. 38.
    Csanady L (2006) Statistical evaluation of ion-channel gating models based on distributions of log-likelihood ratios. Biophys J 90:3523–3545PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Qin F, Auerbach A, Sachs F (1996) Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events. Biophys J 70:264–280PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Qin F, Auerbach A, Sachs F (2000) A direct optimization approach to hidden Markov modeling for single channel kinetics. Biophys J 79:1915–1927PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Qin F, Auerbach A, Sachs F (2000) Hidden Markov modeling for single channel kinetics with filtering and correlated noise. Biophys J 79:1928–1944PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Venkataramanan L, Sigworth F (2002) Applying hidden Markov models to the analysis of single ion channel activity. Biophys J 82:1930–1942PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Lampert A, Korngreen A (2014) Markov modeling of ion channels: implications for understanding disease. Prog Mol Biol Transl Sci 123:1–21PubMedCrossRefGoogle Scholar
  44. 44.
    Milescu LS, Akk G, Sachs F (2005) Maximum likelihood estimation of ion channel kinetics from macroscopic currents. Biophys J 88:2494–2515PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Irvine LA, Jafri MS, Winslow RL (1999) Cardiac sodium channel Markov model with temperature dependence and recovery from inactivation. Biophys J 76:1868–1885PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Celentano JJ, Hawkes AG (2004) Use of the covariance matrix in directly fitting kinetic parameters: application to GABAA receptors. Biophys J 87:276–294PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Moffatt L (2007) Estimation of ion channel kinetics from fluctuations of macroscopic currents. Biophys J 93:74–91PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Stepanyuk AR, Borisyuk AL, Belan PV (2011) Efficient maximum likelihood estimation of kinetic rate constants from macroscopic currents. PLoS One 6:e29731PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Sigworth FJ (1985) Open channel noise. I. noise in acetylcholine receptor currents suggests conformational fluctuations. Biophys J 47:709–720PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Stepanyuk A, Borisyuk A, Belan P (2014) Maximum likelihood estimation of biophysical parameters of synaptic receptors from macroscopic currents. Front Cell Neurosci 8:303–317PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Qin F, Li L (2004) Model-based fitting of single-channel dwell-time distributions. Biophys J 87:1657–1671PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Anderson C, Stevens C (1973) Voltage clamp analysis of acetylcholine produced end‐plate current fluctuations at frog neuromuscular junction. J Physiol 235:655–691PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Sigworth F (1980) The variance of sodium current fluctuations at the node of Ranvier. J Physiol 307:97–129PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Milescu LS, Yamanishi T, Ptak K, Smith JC (2010) Kinetic properties and functional dynamics of sodium channels during repetitive spiking in a slow pacemaker neuron. J Neurosci 30:12113–12127PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Bar-Yehuda D, Korngreen A (2008) Space-clamp problems when voltage clamping neurons expressing voltage-gated conductances. J Neurophysiol 99:1127–1136PubMedCrossRefGoogle Scholar
  56. 56.
    Stuart G, Spruston N, Sakmann B, Häusser M (1997) Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci 20:125–131PubMedCrossRefGoogle Scholar
  57. 57.
    Milescu LS, Bean BP, Smith JC (2010) Isolation of somatic Na+ currents by selective inactivation of axonal channels with a voltage prepulse. J Neurosci 30:7740–7748PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Heinemann SH (1995) Guide to data acquisition and analysis. In: Sakmann B, Neher E (eds) Single-channel recording, 2nd edn. Springer, New York, pp 53–91CrossRefGoogle Scholar
  59. 59.
    Armstrong CM, Bezanilla F (1974) Charge movement associated with the opening and closing of the activation gates of the Na channels. J Gen Physiol 63:533–552PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Fletcher R (1987) Practical methods of optimization. John Wiley & Sons, ChichesterGoogle Scholar
  61. 61.
    Heinemann SH, Conti F (1992) Nonstationary noise analysis and application to patch clamp recordings. Methods Enzymol 207:131–148PubMedCrossRefGoogle Scholar
  62. 62.
    Kuo CC, Bean BP (1994) Na+ channels must deactivate to recover from inactivation. Neuron 12:819–829PubMedCrossRefGoogle Scholar
  63. 63.
    Bezanilla F, Armstrong CM (1977) Inactivation of the sodium channel. I sodium current experiments. J Gen Physiol 70:549–566PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Sheets MF, Hanck DA (1995) Voltage-dependent open-state inactivation of cardiac sodium channels: gating current studies with Anthopleurin-A toxin. J Gen Physiol 106:617–640PubMedCrossRefGoogle Scholar
  65. 65.
    Sheets MF, Hanck DA (2005) Charge immobilization of the voltage sensor in domain IV is independent of sodium current inactivation. J Physiol 563:83–93PubMedCrossRefGoogle Scholar
  66. 66.
    Armstrong CM, Bezanilla F (1977) Inactivation of the sodium channel. II. gating current experiments. J Gen Physiol 70:567–590PubMedCrossRefGoogle Scholar
  67. 67.
    Colquhoun D, Dowsland KA, Beato M, Plested AJ (2004) How to impose microscopic reversibility in complex reaction mechanisms. Biophys J 86:3510–3518PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Cha A, Ruben PC, George AL Jr, Fujimoto E, Bezanilla F (1999) Voltage sensors in domains III and IV, but not I and II, are immobilized by Na+ channel fast inactivation. Neuron 22:73–87PubMedCrossRefGoogle Scholar
  69. 69.
    Fletcher R, Powell MJ (1963) A rapidly convergent descent method for minimization. Comput J 6:163–168CrossRefGoogle Scholar
  70. 70.
    Press WH, Teukolsky S, Vetterling W, Flannery B (1992) Numerical recipes in C: the art of scientific computing. Cambridge University, Cambridge, UKGoogle Scholar
  71. 71.
    Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313 CrossRefGoogle Scholar
  72. 72.
    Horst R, Pardalos PM (1995) Handbook of global optimization. Kluwer Academic Publishers, LondonGoogle Scholar
  73. 73.
    Menon V, Spruston N, Kath WL (2009) A state-mutating genetic algorithm to design ion-channel models. Proc Natl Acad Sci U S A 106:16829–16834PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Gurkiewicz M, Korngreen A (2007) A numerical approach to ion channel modelling using whole-cell voltage-clamp recordings and a genetic algorithm. PLoS Comput Biol 3:e169PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Cobelli C, DiStefano JJ 3rd (1980) Parameter and structural identifiability concepts and ambiguities: a critical review and analysis. Am J Physiol 239:R7–R24PubMedGoogle Scholar
  76. 76.
    Kienker P (1989) Equivalence of aggregated Markov models of ion-channel gating. Proc R Soc Lond B Biol Sci 236:269–309PubMedCrossRefGoogle Scholar
  77. 77.
    Bruno WJ, Yang J, Pearson JE (2005) Using independent open-to-closed transitions to simplify aggregated Markov models of ion channel gating kinetics. Proc Natl Acad Sci U S A 102:6326–6331PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Horn R (1987) Statistical methods for model discrimination. applications to gating kinetics and permeation of the acetylcholine receptor channel. Biophys J 51:255–263PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Colquhoun D, Hatton CJ, Hawkes AG (2003) The quality of maximum likelihood estimates of ion channel rate constants. J Physiol 547:699–728PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Koch C, Segev I (2000) The role of single neurons in information processing. Nat Neurosci 3:1171–1177PubMedCrossRefGoogle Scholar
  81. 81.
    Sharp AA, O’Neil MB, Abbott LF, Marder E (1993) Dynamic clamp: computer-generated conductances in real neurons. J Neurophysiol 69:992–995PubMedGoogle Scholar
  82. 82.
    Tan RC, Joyner RW (1990) Electrotonic influences on action potentials from isolated ventricular cells. Circ Res 67:1071–1081PubMedCrossRefGoogle Scholar
  83. 83.
    Robinson HP, Kawai N (1993) Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. J Neurosci Methods 49:157–165PubMedCrossRefGoogle Scholar
  84. 84.
    Kaczmarek LK (2006) Non-conducting functions of voltage-gated ion channels. Nat Rev Neurosci 7:761–771PubMedCrossRefGoogle Scholar
  85. 85.
    Butera RJ Jr, Wilson CG, DelNegro C, Smith JC (2001) A methodology for achieving high-speed rates for artificial conductance injection in electrically excitable biological cells. IEEE Trans Biomed Eng 48:1460–1470PubMedCrossRefGoogle Scholar
  86. 86.
    Christini DJ, Stein KM, Markowitz SM, Lerman BB (1999) Practical real-time computing system for biomedical experiment interface. Ann Biomed Eng 27:180–186PubMedCrossRefGoogle Scholar
  87. 87.
    Dorval AD, Christini DJ, White JA (2001) Real-time linux dynamic clamp: a fast and flexible way to construct virtual ion channels in living cells. Ann Biomed Eng 29:897–907PubMedCrossRefGoogle Scholar
  88. 88.
    Lin RJ, Bettencourt J, White J, Christini DJ, Butera RJ (2010) Real-time experiment interface for biological control applications. Conf Proc IEEE Eng Med Biol Soc 2010:4160–4163PubMedPubMedCentralGoogle Scholar
  89. 89.
    Kullmann PH, Wheeler DW, Beacom J, Horn JP (2004) Implementation of a fast 16-bit dynamic clamp using LabVIEW-RT. J Neurophysiol 91:542–554PubMedCrossRefGoogle Scholar
  90. 90.
    Yang Y, Adowski T, Ramamurthy B, Neef A, Xu-Friedman MA (2015) High-speed dynamic-clamp interface. J Neurophysiol 113:2713–2720PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Nowotny T, Szűcs A, Pinto RD, Selverston AI (2006) StdpC: a modern dynamic clamp. J Neurosci Methods 158:287–299PubMedCrossRefGoogle Scholar
  92. 92.
    Mickus T, Hy J, Spruston N (1999) Properties of slow, cumulative sodium channel inactivation in rat hippocampal CA1 pyramidal neurons. Biophys J 76:846–860PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Fleidervish IA, Friedman A, Gutnick M (1996) Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea‐pig neocortical neurones in slices. J Physiol 493:83–97PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Goldfarb M, Schoorlemmer J, Williams A, Diwakar S, Wang Q, Huang X, Giza J, Tchetchik D, Kelley K, Vega A (2007) Fibroblast growth factor homologous factors control neuronal excitability through modulation of voltage-gated sodium channels. Neuron 55:449–463PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Vacher H, Mohapatra DP, Trimmer JS (2008) Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol Rev 88:1407–1447PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Lai HC, Jan LY (2006) The distribution and targeting of neuronal voltage-gated ion channels. Nat Rev Neurosci 7:548–562PubMedCrossRefGoogle Scholar
  97. 97.
    Palay SL, Sotelo C, Peters A, Orkand PM (1968) The axon hillock and the initial segment. J Cell Biol 38:193–201PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Baranauskas G, David Y, Fleidervish IA (2013) Spatial mismatch between the Na+ flux and spike initiation in axon initial segment. Proc Natl Acad Sci U S A 110:4051–4056PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Kole MH, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ (2008) Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 11:178–186PubMedCrossRefGoogle Scholar
  100. 100.
    Colbert CM, Johnston D (1996) Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. J Neurosci 16:6676–6686PubMedGoogle Scholar
  101. 101.
    Palmer LM, Stuart GJ (2006) Site of action potential initiation in layer 5 pyramidal neurons. J Neurosci 26:1854–1863PubMedCrossRefGoogle Scholar
  102. 102.
    Shu Y, Duque A, Yu Y, Haider B, McCormick DA (2007) Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. J Neurophysiol 97:746–760PubMedCrossRefGoogle Scholar
  103. 103.
    Stuart G, Schiller J, Sakmann B (1997) Action potential initiation and propagation in rat neocortical pyramidal neurons. J Physiol 505:617–632PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Yu Y, Shu Y, McCormick DA (2008) Cortical action potential backpropagation explains spike threshold variability and rapid-onset kinetics. J Neurosci 28:7260–7272PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Autoosa Salari
    • 1
  • Marco A. Navarro
    • 1
  • Lorin S. Milescu
    • 1
    Email author
  1. 1.Division of Biological SciencesUniversity of MissouriColumbiaUSA

Personalised recommendations